About the Project

integral equations

AdvancedHelp

(0.007 seconds)

1—10 of 346 matching pages

1: 28.18 Integrals and Integral Equations
§28.18 Integrals and Integral Equations
2: 32.5 Integral Equations
§32.5 Integral Equations
32.5.1 K ( z , ζ ) = k Ai ( z + ζ 2 ) + k 2 4 z z K ( z , s ) Ai ( s + t 2 ) Ai ( t + ζ 2 ) d s d t ,
3: 30.10 Series and Integrals
Integrals and integral equations for 𝖯𝗌 n m ( x , γ 2 ) are given in Arscott (1964b, §8.6), Erdélyi et al. (1955, §16.13), Flammer (1957, Chapter 5), and Meixner (1951). …
4: 31.10 Integral Equations and Representations
§31.10 Integral Equations and Representations
Kernel Functions
Kernel Functions
For integral equations for special confluent Heun functions (§31.12) see Kazakov and Slavyanov (1996).
5: Bibliography U
  • K. M. Urwin (1964) Integral equations for paraboloidal wave functions. I. Quart. J. Math. Oxford Ser. (2) 15, pp. 309–315.
  • K. M. Urwin (1965) Integral equations for the paraboloidal wave functions. II. Quart. J. Math. Oxford Ser. (2) 16, pp. 257–262.
  • 6: 28.10 Integral Equations
    §28.10 Integral Equations
    §28.10(i) Equations with Elementary Kernels
    §28.10(ii) Equations with Bessel-Function Kernels
    §28.10(iii) Further Equations
    7: 29.8 Integral Equations
    §29.8 Integral Equations
    29.8.2 μ w ( z 1 ) w ( z 2 ) w ( z 3 ) = 2 K 2 K 𝖯 ν ( x ) w ( z ) d z ,
    29.8.7 𝐸𝑐 ν 2 m + 1 ( z 1 , k 2 ) w 2 ( K ) + w 2 ( K ) w 2 ( 0 ) = k 2 sn ( z 1 , k ) K K sn ( z , k ) d 𝖯 ν ( y ) d y 𝐸𝑐 ν 2 m + 1 ( z , k 2 ) d z ,
    For further integral equations see Arscott (1964a), Erdélyi et al. (1955, §15.5.3), Shail (1980), Sleeman (1968a), and Volkmer (1982, 1983, 1984).
    8: 30.15 Signal Analysis
    §30.15(ii) Integral Equation
    30.15.4 e i t ω ϕ n ( t ) d t = ( i ) n 2 π τ σ Λ n ϕ n ( τ σ ω ) χ σ ( ω ) ,
    30.15.5 τ τ e i t ω ϕ n ( t ) d t = ( i ) n 2 π τ Λ n σ ϕ n ( τ σ ω ) ,
    30.15.7 τ τ ϕ k ( t ) ϕ n ( t ) d t = Λ n δ k , n ,
    30.15.8 ϕ k ( t ) ϕ n ( t ) d t = δ k , n .
    9: 12.18 Methods of Computation
    These include the use of power-series expansions, recursion, integral representations, differential equations, asymptotic expansions, and expansions in series of Bessel functions. …
    10: 19.18 Derivatives and Differential Equations
    §19.18(ii) Differential Equations
    and two similar equations obtained by permuting x , y , z in (19.18.10). … The next four differential equations apply to the complete case of R F and R G in the form R a ( 1 2 , 1 2 ; z 1 , z 2 ) (see (19.16.20) and (19.16.23)). The function w = R a ( 1 2 , 1 2 ; x + y , x y ) satisfies an Euler–Poisson–Darboux equation: …Similarly, the function u = R a ( 1 2 , 1 2 ; x + i y , x i y ) satisfies an equation of axially symmetric potential theory: …