About the Project

integer argument

AdvancedHelp

(0.002 seconds)

21—30 of 94 matching pages

21: 19.2 Definitions
19.2.4 F ( ϕ , k ) = 0 ϕ d θ 1 k 2 sin 2 θ = 0 sin ϕ d t 1 t 2 1 k 2 t 2 ,
19.2.5 E ( ϕ , k ) = 0 ϕ 1 k 2 sin 2 θ d θ = 0 sin ϕ 1 k 2 t 2 1 t 2 d t .
19.2.6 D ( ϕ , k ) = 0 ϕ sin 2 θ d θ 1 k 2 sin 2 θ = 0 sin ϕ t 2 d t 1 t 2 1 k 2 t 2 = ( F ( ϕ , k ) E ( ϕ , k ) ) / k 2 .
19.2.7 Π ( ϕ , α 2 , k ) = 0 ϕ d θ 1 k 2 sin 2 θ ( 1 α 2 sin 2 θ ) = 0 sin ϕ d t 1 t 2 1 k 2 t 2 ( 1 α 2 t 2 ) .
If m is an integer, then …
22: 35.8 Generalized Hypergeometric Functions of Matrix Argument
35.8.6 F 2 3 ( a 1 , a 2 , a 3 b 1 , b 2 ; 𝐈 ) = Γ m ( b 1 a 1 ) Γ m ( b 1 a 2 ) Γ m ( b 1 ) Γ m ( b 1 a 1 a 2 ) Γ m ( b 1 a 3 ) Γ m ( b 1 a 1 a 2 a 3 ) Γ m ( b 1 a 1 a 3 ) Γ m ( b 1 a 2 a 3 ) .
35.8.9 lim γ F q p + 1 ( a 1 , , a p , γ b 1 , , b q ; γ 1 𝐓 ) = F q p ( a 1 , , a p b 1 , , b q ; 𝐓 ) ,
35.8.10 lim γ F q + 1 p ( a 1 , , a p b 1 , , b q , γ ; γ 𝐓 ) = F q p ( a 1 , , a p b 1 , , b q ; 𝐓 ) .
23: 6.1 Special Notation
x real variable.
n nonnegative integer.
Unless otherwise noted, primes indicate derivatives with respect to the argument. …
24: 11.1 Special Notation
x real variable.
n integer order.
k nonnegative integer.
Unless indicated otherwise, primes denote derivatives with respect to the argument. …
25: Errata
  • Equations (9.7.3), (9.7.4)

    Originally the function χ was presented with argument given by a positive integer n . It has now been clarified to be valid for argument given by a positive real number x .

  • 26: 35.6 Confluent Hypergeometric Functions of Matrix Argument
    35.6.3 L ν ( γ ) ( 𝐓 ) = Γ m ( γ + ν + 1 2 ( m + 1 ) ) Γ m ( γ + 1 2 ( m + 1 ) ) F 1 1 ( ν γ + 1 2 ( m + 1 ) ; 𝐓 ) , ( γ ) , ( γ + ν ) > 1 .
    35.6.8 𝛀 | 𝐓 | c 1 2 ( m + 1 ) Ψ ( a ; b ; 𝐓 ) d 𝐓 = Γ m ( c ) Γ m ( a c ) Γ m ( c b + 1 2 ( m + 1 ) ) Γ m ( a ) Γ m ( a b + 1 2 ( m + 1 ) ) , ( a ) > ( c ) + 1 2 ( m 1 ) > m 1 , ( c b ) > 1 .
    27: 33.22 Particle Scattering and Atomic and Molecular Spectra
    The Coulomb functions given in this chapter are most commonly evaluated for real values of ρ , r , η , ϵ and nonnegative integer values of , but they may be continued analytically to complex arguments and order as indicated in §33.13. …
    28: 7.1 Special Notation
    x real variable.
    n nonnegative integer.
    Unless otherwise noted, primes indicate derivatives with respect to the argument. …
    29: 33.8 Continued Fractions
    With arguments η , ρ suppressed,
    33.8.1 F F = S + 1 R + 1 2 T + 1 R + 2 2 T + 2 .
    33.8.2 H ± H ± = c ± i ρ a b 2 ( ρ η ± i ) + ( a + 1 ) ( b + 1 ) 2 ( ρ η ± 2 i ) + ,
    30: 35.7 Gaussian Hypergeometric Function of Matrix Argument
    35.7.3 F 1 2 ( a , b c ; [ t 1 0 0 t 2 ] ) = k = 0 ( a ) k ( c a ) k ( b ) k ( c b ) k k ! ( c ) 2 k ( c 1 2 ) k ( t 1 t 2 ) k F 1 2 ( a + k , b + k c + 2 k ; t 1 + t 2 t 1 t 2 ) .
    35.7.7 F 1 2 ( a , b c ; 𝐈 ) = Γ m ( c ) Γ m ( c a b ) Γ m ( c a ) Γ m ( c b ) , ( c ) , ( c a b ) > 1 2 ( m 1 ) .
    35.7.8 F 1 2 ( a , b c ; 𝐓 ) = Γ m ( c ) Γ m ( c a b ) Γ m ( c a ) Γ m ( c b ) F 1 2 ( a , b a + b c + 1 2 ( m + 1 ) ; 𝐈 𝐓 ) , 𝟎 < 𝐓 < 𝐈 ; 1 2 ( j + 1 ) a for some j = 1 , , m ; 1 2 ( j + 1 ) c and c a b 1 2 ( m j ) for all j = 1 , , m .