About the Project

indices%20differing%20by%20an%20integer

AdvancedHelp

(0.003 seconds)

21—30 of 739 matching pages

21: 28.2 Definitions and Basic Properties
This equation has regular singularities at 0 and 1, both with exponents 0 and 1 2 , and an irregular singular point at . … Furthermore, a solution w with given initial constant values of w and w at a point z 0 is an entire function of the three variables z , a , and q . … cos ( π ν ) is an entire function of a , q 2 . … An equivalent formulation is given by …
§28.2(vi) Eigenfunctions
22: 25.11 Hurwitz Zeta Function
25.11.4 ζ ( s , a ) = ζ ( s , a + m ) + n = 0 m 1 1 ( n + a ) s , m = 1 , 2 , 3 , .
See accompanying text
Figure 25.11.1: Hurwitz zeta function ζ ( x , a ) , a = 0. …8, 1, 20 x 10 . … Magnify
where h , k are integers with 1 h k and n = 1 , 2 , 3 , . …
25.11.35 n = 0 ( 1 ) n ( n + a ) s = 1 Γ ( s ) 0 x s 1 e a x 1 + e x d x = 2 s ( ζ ( s , 1 2 a ) ζ ( s , 1 2 ( 1 + a ) ) ) , a > 0 , s > 0 ; or a = 0 , a 0 , 0 < s < 1 .
For an exponentially-improved form of (25.11.43) see Paris (2005b).
23: 27.15 Chinese Remainder Theorem
For example, suppose a lengthy calculation involves many 10-digit integers. Most of the calculation can be done with five-digit integers as follows. …Their product m has 20 digits, twice the number of digits in the data. By the Chinese remainder theorem each integer in the data can be uniquely represented by its residues (mod m 1 ), (mod m 2 ), (mod m 3 ), and (mod m 4 ), respectively. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
24: 26.10 Integer Partitions: Other Restrictions
§26.10 Integer Partitions: Other Restrictions
§26.10(i) Definitions
p ( 𝒟 k , n ) denotes the number of partitions of n into parts with difference at least k . p ( 𝒟 3 , n ) denotes the number of partitions of n into parts with difference at least 3, except that multiples of 3 must differ by at least 6. …
25: 26.3 Lattice Paths: Binomial Coefficients
26.3.2 ( m n ) = 0 , n > m .
26.3.4 m = 0 ( m + n m ) x m = 1 ( 1 x ) n + 1 , | x | < 1 .
26.3.7 ( m + 1 n + 1 ) = k = n m ( k n ) , m n 0 ,
26.3.8 ( m n ) = k = 0 n ( m n 1 + k k ) , m n 0 .
26.3.10 ( m n ) = k = 0 n ( 1 ) n k ( m + 1 k ) , m n 0 ,
26: 28.35 Tables
  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ( 1 ) 6 , q = 0 ( 1 ) 10 ( 2 ) 20 ( 4 ) 40 ; 7D. Also ce n ( x , q ) , se n ( x , q ) for q = 0 ( 1 ) 10 , x = 1 ( 1 ) 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 q , b n = 𝑏𝑜 n 2 q .

  • Kirkpatrick (1960) contains tables of the modified functions Ce n ( x , q ) , Se n + 1 ( x , q ) for n = 0 ( 1 ) 5 , q = 1 ( 1 ) 20 , x = 0.1 ( .1 ) 1 ; 4D or 5D.

  • National Bureau of Standards (1967) includes the eigenvalues a n ( q ) , b n ( q ) for n = 0 ( 1 ) 3 with q = 0 ( .2 ) 20 ( .5 ) 37 ( 1 ) 100 , and n = 4 ( 1 ) 15 with q = 0 ( 2 ) 100 ; Fourier coefficients for ce n ( x , q ) and se n ( x , q ) for n = 0 ( 1 ) 15 , n = 1 ( 1 ) 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ( q ) , f e , n ( q ) for n = 0 ( 1 ) 15 with q = 0 ( .5  to  10 ) 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ( q ) , b n + 1 ( q ) for n = 0 ( 1 ) 4 , q = 0 ( 1 ) 50 ; n = 0 ( 1 ) 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ( 50 ) 200 . Fourier coefficients for ce n ( x , 10 ) , se n + 1 ( x , 10 ) , n = 0 ( 1 ) 7 . Mathieu functions ce n ( x , 10 ) , se n + 1 ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , x = 0 ( 5 ) 90 . Modified Mathieu functions Mc n ( j ) ( x , 10 ) , Ms n + 1 ( j ) ( x , 10 ) , and their first x -derivatives for n = 0 ( 1 ) 4 , j = 1 , 2 , x = 0 ( .2 ) 4 . Precision is mostly 9S.

  • 27: 26.12 Plane Partitions
    Different configurations are counted as different plane partitions. As an example, there are six plane partitions of 3: … The plane partition in Figure 26.12.1 is an example of a cyclically symmetric plane partition. … A strict shifted plane partition is an arrangement of the parts in a partition so that each row is indented one space from the previous row and there is weak decrease across rows and strict decrease down columns. An example is given by: …
    28: 21.1 Special Notation
    g , h positive integers.
    g × × × ( g times).
    g × h set of all g × h matrices with integer elements.
    S 1 / S 2 set of all elements of S 1 , modulo elements of S 2 . Thus two elements of S 1 / S 2 are equivalent if they are both in S 1 and their difference is in S 2 . (For an example see §20.12(ii).)
    a b intersection index of a and b , two cycles lying on a closed surface. a b = 0 if a and b do not intersect. Otherwise a b gets an additive contribution from every intersection point. This contribution is 1 if the basis of the tangent vectors of the a and b cycles (§21.7(i)) at the point of intersection is positively oriented; otherwise it is 1 .
    29: 12.1 Special Notation
    x , y real variables.
    n , s nonnegative integers.
    Unless otherwise noted, primes indicate derivatives with respect to the variable, and fractional powers take their principal values. … An older notation, due to Whittaker (1902), for U ( a , z ) is D ν ( z ) . …Whittaker’s notation D ν ( z ) is useful when ν is a nonnegative integer (Hermite polynomial case).
    30: 6.19 Tables
  • Zhang and Jin (1996, pp. 652, 689) includes Si ( x ) , Ci ( x ) , x = 0 ( .5 ) 20 ( 2 ) 30 , 8D; Ei ( x ) , E 1 ( x ) , x = [ 0 , 100 ] , 8S.

  • Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of z e z E 1 ( z ) , x = 19 ( 1 ) 20 , y = 0 ( 1 ) 20 , 6D; e z E 1 ( z ) , x = 4 ( .5 ) 2 , y = 0 ( .2 ) 1 , 6D; E 1 ( z ) + ln z , x = 2 ( .5 ) 2.5 , y = 0 ( .2 ) 1 , 6D.

  • Zhang and Jin (1996, pp. 690–692) includes the real and imaginary parts of E 1 ( z ) , ± x = 0.5 , 1 , 3 , 5 , 10 , 15 , 20 , 50 , 100 , y = 0 ( .5 ) 1 ( 1 ) 5 ( 5 ) 30 , 50 , 100 , 8S.