About the Project

ident Online Pharmacy -- www.icmat. -- Buy reinforce UK USA 50mg 100mg

AdvancedHelp

(0.003 seconds)

11—20 of 204 matching pages

11: 36.9 Integral Identities
§36.9 Integral Identities
36.9.9 | Ψ ( E ) ( x , y , z ) | 2 = 8 π 2 3 2 / 3 0 0 2 π ( Ai ( 1 3 1 / 3 ( x + i y + 2 z u exp ( i θ ) + 3 u 2 exp ( 2 i θ ) ) ) Bi ( 1 3 1 / 3 ( x i y + 2 z u exp ( i θ ) + 3 u 2 exp ( 2 i θ ) ) ) ) u d u d θ .
12: Possible Errors in DLMF
Errors in the printed Handbook may already have been corrected in the online version; please consult Errata. …
13: Bibliography L
  • J. Lepowsky and S. Milne (1978) Lie algebraic approaches to classical partition identities. Adv. in Math. 29 (1), pp. 15–59.
  • J. Lepowsky and R. L. Wilson (1982) A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities. Adv. in Math. 45 (1), pp. 21–72.
  • L. Lorch (1992) On Bessel functions of equal order and argument. Rend. Sem. Mat. Univ. Politec. Torino 50 (2), pp. 209–216 (1993).
  • D. W. Lozier and F. W. J. Olver (1994) Numerical Evaluation of Special Functions. In Mathematics of Computation 1943–1993: A Half-Century of Computational Mathematics (Vancouver, BC, 1993), Proc. Sympos. Appl. Math., Vol. 48, pp. 79–125.
  • 14: 9.18 Tables
  • Yakovleva (1969) tabulates Fock’s functions U ( x ) π Bi ( x ) , U ( x ) = π Bi ( x ) , V ( x ) π Ai ( x ) , V ( x ) = π Ai ( x ) for x = 9 ( .001 ) 9 . Precision is 7S.

  • Miller (1946) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; b k , Bi ( b k ) , b k , Bi ( b k ) , k = 1 ( 1 ) 20 . Precision is 8D. Entries for k = 1 ( 1 ) 20 are reproduced in Abramowitz and Stegun (1964, Chapter 10).

  • Sherry (1959) tabulates a k , Ai ( a k ) , a k , Ai ( a k ) , k = 1 ( 1 ) 50 ; 20S.

  • National Bureau of Standards (1958) tabulates A 0 ( x ) π Hi ( x ) and A 0 ( x ) π Hi ( x ) for x = 0 ( .01 ) 1 ( .02 ) 5 ( .05 ) 11 and 1 / x = 0.01 ( .01 ) 0.1 ; 0 x A 0 ( t ) d t for x = 0.5 , 1 ( 1 ) 11 . Precision is 8D.

  • Nosova and Tumarkin (1965) tabulates e 0 ( x ) π Hi ( x ) , e 0 ( x ) = π Hi ( x ) , e ~ 0 ( x ) π Gi ( x ) , e ~ 0 ( x ) = π Gi ( x ) for x = 1 ( .01 ) 10 ; 7D. Also included are the real and imaginary parts of e 0 ( z ) and i e 0 ( z ) , where z = i y and y = 0 ( .01 ) 9 ; 6-7D.

  • 15: 22.9 Cyclic Identities
    §22.9 Cyclic Identities
    §22.9(ii) Typical Identities of Rank 2
    §22.9(iii) Typical Identities of Rank 3
    16: 24.5 Recurrence Relations
    §24.5(ii) Other Identities
    §24.5(iii) Inversion Formulas
    In each of (24.5.9) and (24.5.10) the first identity implies the second one and vice-versa. …
    17: 15.17 Mathematical Applications
    §15.17(iv) Combinatorics
    In combinatorics, hypergeometric identities classify single sums of products of binomial coefficients. …
    18: How to Cite
    The direct correspondence between the reference numbers in the printed Handbook and the permalinks used online in the DLMF enables readers of either version to cite specific items and their readers to easily look them up again — in either version! The following table outlines the correspondence between reference numbers as they appear in the Handbook, and the URL’s that find the same item online. …
    19: 27.15 Chinese Remainder Theorem
    The Chinese remainder theorem states that a system of congruences x a 1 ( mod m 1 ) , , x a k ( mod m k ) , always has a solution if the moduli are relatively prime in pairs; the solution is unique (mod m ), where m is the product of the moduli. …
    20: Bibliography U
  • Unpublished Mathematical Tables (1944) Mathematics of Computation Unpublished Mathematical Tables Collection.
  • T. Uzer, J. T. Muckerman, and M. S. Child (1983) Collisions and umbilic catastrophes. The hyperbolic umbilic canonical diffraction integral. Molecular Phys. 50 (6), pp. 1215–1230.