About the Project

hyperbolic tangent function

AdvancedHelp

(0.010 seconds)

11—20 of 56 matching pages

11: 4.40 Integrals
β–Ί
4.40.3 tanh ⁑ x ⁒ d x = ln ⁑ ( cosh ⁑ x ) .
β–Ί
4.40.4 csch ⁑ x ⁒ d x = ln ⁑ ( tanh ⁑ ( 1 2 ⁒ x ) ) , 0 < x < .
β–Ί
4.40.8 0 sinh ⁑ ( a ⁒ x ) sinh ⁑ ( Ο€ ⁒ x ) ⁒ d x = 1 2 ⁒ tan ⁑ ( 1 2 ⁒ a ) , Ο€ < a < Ο€ ,
β–Ί
4.40.10 0 tanh ⁑ ( a ⁒ x ) tanh ⁑ ( b ⁒ x ) x ⁒ d x = ln ⁑ ( a b ) , a > 0 , b > 0 .
β–Ί
4.40.13 arctanh ⁑ x ⁒ d x = x ⁒ arctanh ⁑ x + 1 2 ⁒ ln ⁑ ( 1 x 2 ) , 1 < x < 1 ,
12: 4.39 Continued Fractions
β–Ί
4.39.1 tanh ⁑ z = z 1 + z 2 3 + z 2 5 + z 2 7 + β‹― , z ± 1 2 ⁒ Ο€ ⁒ i , ± 3 2 ⁒ Ο€ ⁒ i , .
β–Ί
4.39.3 arctanh ⁑ z = z 1 z 2 3 4 ⁒ z 2 5 9 ⁒ z 2 7 β‹― ,
13: 29.5 Special Cases and Limiting Forms
β–Ί
29.5.5 lim k 1 𝐸𝑐 Ξ½ m ⁑ ( z , k 2 ) 𝐸𝑐 Ξ½ m ⁑ ( 0 , k 2 ) = lim k 1 𝐸𝑠 Ξ½ m + 1 ⁑ ( z , k 2 ) 𝐸𝑠 Ξ½ m + 1 ⁑ ( 0 , k 2 ) = 1 ( cosh ⁑ z ) ΞΌ ⁒ F ⁑ ( 1 2 ⁒ ΞΌ 1 2 ⁒ Ξ½ , 1 2 ⁒ ΞΌ + 1 2 ⁒ Ξ½ + 1 2 1 2 ; tanh 2 ⁑ z ) , m even,
β–Ί
29.5.6 lim k 1 𝐸𝑐 Ξ½ m ⁑ ( z , k 2 ) d 𝐸𝑐 Ξ½ m ⁑ ( z , k 2 ) / d z | z = 0 = lim k 1 𝐸𝑠 Ξ½ m + 1 ⁑ ( z , k 2 ) d 𝐸𝑠 Ξ½ m + 1 ⁑ ( z , k 2 ) / d z | z = 0 = tanh ⁑ z ( cosh ⁑ z ) ΞΌ ⁒ F ⁑ ( 1 2 ⁒ ΞΌ 1 2 ⁒ Ξ½ + 1 2 , 1 2 ⁒ ΞΌ + 1 2 ⁒ Ξ½ + 1 3 2 ; tanh 2 ⁑ z ) , m odd,
14: 28.23 Expansions in Series of Bessel Functions
β–Ί
28.23.3 me Ξ½ ⁑ ( 0 , h 2 ) ⁒ M Ξ½ ( j ) ⁑ ( z , h ) = i ⁒ tanh ⁑ z ⁒ n = ( 1 ) n ⁒ ( Ξ½ + 2 ⁒ n ) ⁒ c 2 ⁒ n Ξ½ ⁑ ( h 2 ) ⁒ π’ž Ξ½ + 2 ⁒ n ( j ) ⁑ ( 2 ⁒ h ⁒ cosh ⁑ z ) ,
β–Ί
28.23.10 Ms 2 ⁒ m + 1 ( j ) ⁑ ( z , h ) = ( 1 ) m ⁒ ( se 2 ⁒ m + 1 ⁑ ( 0 , h 2 ) ) 1 ⁒ tanh ⁑ z ⁒ β„“ = 0 ( 1 ) β„“ ⁒ ( 2 ⁒ β„“ + 1 ) ⁒ B 2 ⁒ β„“ + 1 2 ⁒ m + 1 ⁑ ( h 2 ) ⁒ π’ž 2 ⁒ β„“ + 1 ( j ) ⁑ ( 2 ⁒ h ⁒ cosh ⁑ z ) ,
β–Ί
28.23.12 Ms 2 ⁒ m + 2 ( j ) ⁑ ( z , h ) = ( 1 ) m ⁒ ( se 2 ⁒ m + 2 ⁑ ( 0 , h 2 ) ) 1 ⁒ tanh ⁑ z ⁒ β„“ = 0 ( 1 ) β„“ ⁒ ( 2 ⁒ β„“ + 2 ) ⁒ B 2 ⁒ β„“ + 2 2 ⁒ m + 2 ⁑ ( h 2 ) ⁒ π’ž 2 ⁒ β„“ + 2 ( j ) ⁑ ( 2 ⁒ h ⁒ cosh ⁑ z ) ,
15: 19.10 Relations to Other Functions
§19.10 Relations to Other Functions
β–Ί
§19.10(i) Theta and Elliptic Functions
β–ΊFor relations of Legendre’s integrals to theta functions, Jacobian functions, and Weierstrass functions, see §§20.9(i), 22.15(ii), and 23.6(iv), respectively. … β–Ί
§19.10(ii) Elementary Functions
β–ΊIn each case when y = 1 , the quantity multiplying R C supplies the asymptotic behavior of the left-hand side as the left-hand side tends to 0. …
16: 4.33 Maclaurin Series and Laurent Series
β–Ί
4.33.3 tanh ⁑ z = z z 3 3 + 2 15 ⁒ z 5 17 315 ⁒ z 7 + β‹― + 2 2 ⁒ n ⁒ ( 2 2 ⁒ n 1 ) ⁒ B 2 ⁒ n ( 2 ⁒ n ) ! ⁒ z 2 ⁒ n 1 + β‹― , | z | < 1 2 ⁒ Ο€ .
17: 33.7 Integral Representations
β–Ί
33.7.3 H β„“ ⁑ ( Ξ· , ρ ) = i ⁒ e Ο€ ⁒ Ξ· ⁒ ρ β„“ + 1 ( 2 ⁒ β„“ + 1 ) ! ⁒ C β„“ ⁑ ( Ξ· ) ⁒ 0 ( exp ⁑ ( i ⁒ ( ρ ⁒ tanh ⁑ t 2 ⁒ Ξ· ⁒ t ) ) ( cosh ⁑ t ) 2 ⁒ β„“ + 2 + i ⁒ ( 1 + t 2 ) β„“ ⁒ exp ⁑ ( ρ ⁒ t + 2 ⁒ Ξ· ⁒ arctan ⁑ t ) ) ⁒ d t ,
18: 12.12 Integrals
β–Ί
12.12.4 ( U ⁑ ( a , z ) ) 2 + ( U ¯ ⁑ ( a , z ) ) 2 = 2 3 2 Ο€ ⁒ Ξ“ ⁑ ( 1 2 a ) ⁒ 0 e 2 ⁒ a ⁒ t + 1 2 ⁒ z 2 ⁒ tanh ⁑ t sinh ⁑ ( 2 ⁒ t ) ⁒ d t , ⁑ a < 1 2 .
19: 4.38 Inverse Hyperbolic Functions: Further Properties
β–Ί
4.38.5 arctanh ⁑ z = z + z 3 3 + z 5 5 + z 7 7 + β‹― , | z | 1 , z ± 1 .
β–Ί
4.38.7 arctanh ⁑ z = z 1 z 2 ⁒ ( 1 + 2 3 ⁒ z 2 z 2 1 + 2 4 3 5 ⁒ ( z 2 z 2 1 ) 2 + β‹― ) , ⁑ ( z 2 ) < 1 2 ,
β–Ί
4.38.11 d d z ⁑ arctanh ⁑ z = 1 1 z 2 .
β–Ί
4.38.17 Arctanh ⁑ u ± Arctanh ⁑ v = Arctanh ⁑ ( u ± v 1 ± u ⁒ v ) ,
β–Ί
4.38.19 Arctanh ⁑ u ± Arccoth ⁑ v = Arctanh ⁑ ( u ⁒ v ± 1 v ± u ) = Arccoth ⁑ ( v ± u u ⁒ v ± 1 ) .
20: 10.19 Asymptotic Expansions for Large Order
§10.19 Asymptotic Expansions for Large Order
β–Ί
§10.19(i) Asymptotic Forms
β–Ί
§10.19(ii) Debye’s Expansions
β–Ί
§10.19(iii) Transition Region
β–ΊSee also §10.20(i).