About the Project

holomorphic differentials

AdvancedHelp

(0.001 seconds)

11—20 of 364 matching pages

11: 1.6 Vectors and Vector-Valued Functions
1.6.19 = 𝐢 x + 𝐣 y + 𝐤 z .
where d 𝐒 is the surface element with an attached normal direction 𝐓 u × 𝐓 v . … Suppose S is an oriented surface with boundary S which is oriented so that its direction is clockwise relative to the normals of S . …
1.6.57 S ( × 𝐅 ) d 𝐒 = S 𝐅 d 𝐬 ,
where g / n = g 𝐧 is the derivative of g normal to the surface outwards from V and 𝐧 is the unit outer normal vector. …
12: 4.40 Integrals
4.40.1 sinh x d x = cosh x ,
4.40.2 cosh x d x = sinh x ,
4.40.5 sech x d x = gd ( x ) .
4.40.6 coth x d x = ln ( sinh x ) , 0 < x < .
13: 6.14 Integrals
6.14.1 0 e a t E 1 ( t ) d t = 1 a ln ( 1 + a ) , a > 1 ,
6.14.2 0 e a t Ci ( t ) d t = 1 2 a ln ( 1 + a 2 ) , a > 0 ,
6.14.3 0 e a t si ( t ) d t = 1 a arctan a , a > 0 .
6.14.4 0 E 1 2 ( t ) d t = 2 ln 2 ,
6.14.6 0 Ci 2 ( t ) d t = 0 si 2 ( t ) d t = 1 2 π ,
14: 4.26 Integrals
4.26.1 sin x d x = cos x ,
4.26.2 cos x d x = sin x .
4.26.9 0 π sin ( m t ) sin ( n t ) d t = 0 , m n ,
4.26.10 0 π cos ( m t ) cos ( n t ) d t = 0 , m n ,
4.26.14 arcsin x d x = x arcsin x + ( 1 x 2 ) 1 / 2 , 1 < x < 1 ,
15: 10.15 Derivatives with Respect to Order
10.15.2 Y ν ( z ) ν = cot ( ν π ) ( J ν ( z ) ν π Y ν ( z ) ) csc ( ν π ) J ν ( z ) ν π J ν ( z ) .
10.15.3 J ν ( z ) ν | ν = n = π 2 Y n ( z ) + n ! 2 ( 1 2 z ) n k = 0 n 1 ( 1 2 z ) k J k ( z ) k ! ( n k ) .
For J ν ( z ) / ν at ν = n combine (10.2.4) and (10.15.3).
10.15.5 J ν ( z ) ν | ν = 0 = π 2 Y 0 ( z ) , Y ν ( z ) ν | ν = 0 = π 2 J 0 ( z ) .
16: 12.17 Physical Applications
12.17.2 2 = 2 x 2 + 2 y 2 + 2 z 2
12.17.4 1 ξ 2 + η 2 ( 2 w ξ 2 + 2 w η 2 ) + 2 w ζ 2 + k 2 w = 0 .
In a similar manner coordinates of the paraboloid of revolution transform the Helmholtz equation into equations related to the differential equations considered in this chapter. …
17: 9.11 Products
§9.11(i) Differential Equation
9.11.5 w 1 w 2 d z = w 1 w 2 + z w 1 w 2 ,
9.11.6 w 1 w 2 d z = 1 2 ( w 1 w 2 + z 𝒲 { w 1 , w 2 } ) ,
9.11.7 w 1 w 2 d z = 1 3 ( w 1 w 2 + w 1 w 2 + z w 1 w 2 z 2 w 1 w 2 ) ,
For z n w 1 w 2 d z , z n w 1 w 2 d z , z n w 1 w 2 d z , where n is any positive integer, see Albright (1977). …
18: 10.73 Physical Applications
10.73.1 2 V = 1 r r ( r V r ) + 1 r 2 2 V ϕ 2 + 2 V z 2 = 0 ,
10.73.2 2 ψ = 1 c 2 2 ψ t 2 ,
In the theory of plates and shells, the oscillations of a circular plate are determined by the differential equation
10.73.3 4 W + λ 2 2 W t 2 = 0 .
10.73.4 ( 2 + k 2 ) f = 1 ρ 2 ρ ( ρ 2 f ρ ) + 1 ρ 2 sin θ θ ( sin θ f θ ) + 1 ρ 2 sin 2 θ 2 f ϕ 2 + k 2 f .
19: 19.4 Derivatives and Differential Equations
§19.4 Derivatives and Differential Equations
§19.4(ii) Differential Equations
Let D k = / k . Then …If ϕ = π / 2 , then these two equations become hypergeometric differential equations (15.10.1) for K ( k ) and E ( k ) . …
20: 9.10 Integrals
9.10.8 z w ( z ) d z = w ( z ) ,
9.10.9 z 2 w ( z ) d z = z w ( z ) w ( z ) ,
9.10.12 0 Bi ( t ) d t = 0 .
9.10.20 0 x 0 v Ai ( t ) d t d v = x 0 x Ai ( t ) d t Ai ( x ) + Ai ( 0 ) ,
9.10.21 0 x 0 v Bi ( t ) d t d v = x 0 x Bi ( t ) d t Bi ( x ) + Bi ( 0 ) ,