About the Project

generalized hypergeometric functions

AdvancedHelp

(0.012 seconds)

31—40 of 138 matching pages

31: 16.8 Differential Equations
§16.8(ii) The Generalized Hypergeometric Differential Equation
In Letessier et al. (1994) examples are discussed in which the generalized hypergeometric function satisfies a differential equation that is of order 1 or even 2 less than might be expected. … (Note that the generalized hypergeometric functions on the right-hand side are polynomials in z 0 .) … In this reference it is also explained that in general when q > 1 no simple representations in terms of generalized hypergeometric functions are available for the fundamental solutions near z = 1 . …
32: Richard A. Askey
33: 16.1 Special Notation
The main functions treated in this chapter are the generalized hypergeometric function F q p ( a 1 , , a p b 1 , , b q ; z ) , the Appell (two-variable hypergeometric) functions F 1 ( α ; β , β ; γ ; x , y ) , F 2 ( α ; β , β ; γ , γ ; x , y ) , F 3 ( α , α ; β , β ; γ ; x , y ) , F 4 ( α , β ; γ , γ ; x , y ) , and the Meijer G -function G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) . Alternative notations are F q p ( 𝐚 𝐛 ; z ) , F q p ( a 1 , , a p ; b 1 , , b q ; z ) , and F q p ( 𝐚 ; 𝐛 ; z ) for the generalized hypergeometric function, F 1 ( α , β , β ; γ ; x , y ) , F 2 ( α , β , β ; γ , γ ; x , y ) , F 3 ( α , α , β , β ; γ ; x , y ) , F 4 ( α , β ; γ , γ ; x , y ) , for the Appell functions, and G p , q m , n ( z ; 𝐚 ; 𝐛 ) for the Meijer G -function.
34: Bibliography Y
  • Z. M. Yan (1992) Generalized Hypergeometric Functions and Laguerre Polynomials in Two Variables. In Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemporary Mathematics, Vol. 138, pp. 239–259.
  • 35: 18.34 Bessel Polynomials
    §18.34(i) Definitions and Recurrence Relation
    For the confluent hypergeometric function F 1 1 and the generalized hypergeometric function F 0 2 , the Laguerre polynomial L n ( α ) and the Whittaker function W κ , μ see §16.2(ii), §16.2(iv), (18.5.12), and (13.14.3), respectively.
    18.34.1 y n ( x ; a ) = F 0 2 ( n , n + a 1 ; x 2 ) = ( n + a 1 ) n ( x 2 ) n F 1 1 ( n 2 n a + 2 ; 2 x ) = n ! ( 1 2 x ) n L n ( 1 a 2 n ) ( 2 x 1 ) = ( 1 2 x ) 1 1 2 a e 1 / x W 1 1 2 a , 1 2 ( a 1 ) + n ( 2 x 1 ) .
    18.34.7_1 ϕ n ( x ; λ ) = e λ e x ( 2 λ e x ) λ 1 2 y n ( λ 1 e x ; 2 2 λ ) / n ! = ( 1 ) n e λ e x ( 2 λ e x ) λ n 1 2 L n ( 2 λ 2 n 1 ) ( 2 λ e x ) = ( 2 λ ) 1 2 e x / 2 W λ , n + 1 2 λ ( 2 λ e x ) / n ! , n = 0 , 1 , , N = λ 3 2 , λ > 1 2 ,
    36: Howard S. Cohl
    Cohl has published papers in orthogonal polynomials and special functions, and is particularly interested in fundamental solutions of linear partial differential equations on Riemannian manifolds, associated Legendre functions, generalized and basic hypergeometric functions, eigenfunction expansions of fundamental solutions in separable coordinate systems for linear partial differential equations, orthogonal polynomial generating function and generalized expansions, and q -series. …
    37: 13.31 Approximations
    13.31.1 A n ( z ) = s = 0 n ( n ) s ( n + 1 ) s ( a ) s ( b ) s ( a + 1 ) s ( b + 1 ) s ( n ! ) 2 F 3 3 ( n + s , n + 1 + s , 1 1 + s , a + 1 + s , b + 1 + s ; z ) ,
    38: 18.5 Explicit Representations
    §18.5(iii) Finite Power Series, the Hypergeometric Function, and Generalized Hypergeometric Functions
    Hermite
    18.5.13 H n ( x ) = n ! = 0 n / 2 ( 1 ) ( 2 x ) n 2 ! ( n 2 ) ! = ( 2 x ) n F 0 2 ( 1 2 n , 1 2 n + 1 2 ; 1 x 2 ) .
    39: 35.7 Gaussian Hypergeometric Function of Matrix Argument
    35.7.3 F 1 2 ( a , b c ; [ t 1 0 0 t 2 ] ) = k = 0 ( a ) k ( c a ) k ( b ) k ( c b ) k k ! ( c ) 2 k ( c 1 2 ) k ( t 1 t 2 ) k F 1 2 ( a + k , b + k c + 2 k ; t 1 + t 2 t 1 t 2 ) .
    35.7.7 F 1 2 ( a , b c ; 𝐈 ) = Γ m ( c ) Γ m ( c a b ) Γ m ( c a ) Γ m ( c b ) , ( c ) , ( c a b ) > 1 2 ( m 1 ) .
    40: 35.6 Confluent Hypergeometric Functions of Matrix Argument
    35.6.3 L ν ( γ ) ( 𝐓 ) = Γ m ( γ + ν + 1 2 ( m + 1 ) ) Γ m ( γ + 1 2 ( m + 1 ) ) F 1 1 ( ν γ + 1 2 ( m + 1 ) ; 𝐓 ) , ( γ ) , ( γ + ν ) > 1 .