About the Project

generalized exponential integrals

AdvancedHelp

(0.013 seconds)

31—40 of 118 matching pages

31: 18.17 Integrals
18.17.15 e x L n ( α ) ( x ) = x e y L n ( α + μ ) ( y ) ( y x ) μ 1 Γ ( μ ) d y , μ > 0 .
18.17.28_5 0 e x x α L n ( α ) ( x ) e i x y d x = Γ ( α + n + 1 ) ( i y ) n n ! ( 1 i y ) α + n + 1 ,
18.17.34 0 e x z L n ( α ) ( x ) e x x α d x = Γ ( α + n + 1 ) z n n ! ( z + 1 ) α + n + 1 , z > 1 .
18.17.34_5 0 e x z L m ( α ) ( x ) L n ( α ) ( x ) e x x α d x = Γ ( α + m + 1 ) Γ ( α + n + 1 ) Γ ( α + 1 ) m ! n ! z m + n ( z + 1 ) α + m + n + 1 F 1 2 ( m , n α + 1 ; z 2 ) , z > 1 .
18.17.40 0 e a x L n ( α ) ( b x ) x z 1 d x = Γ ( z + n ) n ! ( a b ) n a n z F 1 2 ( n , 1 + α z 1 n z ; a a b ) , a > 0 , z > 0 .
32: 2.3 Integrals of a Real Variable
(In other words, differentiation of (2.3.8) with respect to the parameter λ (or μ ) is legitimate.) Another extension is to more general factors than the exponential function. … In generalFor the more general integral (2.3.19) we assume, without loss of generality, that the stationary point (if any) is at the left endpoint. … For extensions to oscillatory integrals with more general t -powers and logarithmic singularities see Wong and Lin (1978) and Sidi (2010). …
33: 18.10 Integral Representations
18.10.6 L n ( α ) ( x 2 ) = 2 ( 1 ) n π 1 2 Γ ( α + 1 2 ) n ! 0 0 π ( x 2 r 2 + 2 i x r cos ϕ ) n e r 2 r 2 α + 1 ( sin ϕ ) 2 α d ϕ d r , α > 1 2 .
18.10.9 L n ( α ) ( x ) = e x x 1 2 α n ! 0 e t t n + 1 2 α J α ( 2 x t ) d t , α > 1 .
34: 1.17 Integral and Series Representations of the Dirac Delta
More generally, assume ϕ ( x ) is piecewise continuous (§1.4(ii)) when x [ c , c ] for any finite positive real value of c , and for each a , e n ( x a ) 2 ϕ ( x ) d x converges absolutely for all sufficiently large values of n . … The sum k = e i k ( x a ) does not converge, but (1.17.18) can be interpreted as a generalized integral in the sense that …
35: 13.10 Integrals
13.10.3 0 e z t t b 1 𝐌 ( a , c , k t ) d t = Γ ( b ) z b 𝐅 1 2 ( a , b ; c ; k / z ) , b > 0 , z > max ( k , 0 ) ,
13.10.7 0 e z t t b 1 U ( a , c , t ) d t = Γ ( b ) Γ ( b c + 1 ) z b 𝐅 1 2 ( a , b ; a + b c + 1 ; 1 1 z ) , b > max ( c 1 , 0 ) , z > 0 .
36: 18.18 Sums
37: 1.13 Differential Equations
(More generally 𝒲 { w 1 ( z ) , , w n ( z ) } = det [ w k ( j 1 ) ( z ) ] , where 1 j , k n .) …(More generally in (1.13.5) for n th-order differential equations, f ( z ) is the coefficient multiplying the ( n 1 ) th-order derivative of the solution divided by the coefficient multiplying the n th-order derivative of the solution, see Ince (1926, §5.2).) …
1.13.13 w ( z ) = W ( z ) exp ( 1 2 f ( z ) d z )
1.13.16 η = exp ( f ( z ) d z ) d z .
38: Bibliography N
  • G. Nemes (2013b) Error bounds and exponential improvement for Hermite’s asymptotic expansion for the gamma function. Appl. Anal. Discrete Math. 7 (1), pp. 161–179.
  • G. Nemes (2013c) Generalization of Binet’s Gamma function formulas. Integral Transforms Spec. Funct. 24 (8), pp. 597–606.
  • G. Nemes (2014a) Error bounds and exponential improvement for the asymptotic expansion of the Barnes G -function. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 470 (2172), pp. 20140534, 14.
  • G. Nemes (2015a) Error bounds and exponential improvements for the asymptotic expansions of the gamma function and its reciprocal. Proc. Roy. Soc. Edinburgh Sect. A 145 (3), pp. 571–596.
  • V. Yu. Novokshënov (1985) The asymptotic behavior of the general real solution of the third Painlevé equation. Dokl. Akad. Nauk SSSR 283 (5), pp. 1161–1165 (Russian).
  • 39: 13.16 Integral Representations
    13.16.9 W κ , μ ( z ) = e 1 2 z z κ + c 0 e z t t c 1 𝐅 1 2 ( 1 2 + μ κ , 1 2 μ κ c ; t ) d t , | ph z | < 1 2 π ,
    40: 4.2 Definitions
    With this definition the general logarithm is given by …
    §4.2(ii) Logarithms to a General Base a
    §4.2(iii) The Exponential Function
    Powers with General Bases
    but the general value of e z is …