About the Project

gamma function

AdvancedHelp

(0.019 seconds)

31—40 of 355 matching pages

31: 5.20 Physical Applications
§5.20 Physical Applications
Rutherford Scattering
5.20.3 ψ n ( β ) = n e β W d x = ( 2 π ) n / 2 β ( n / 2 ) ( β n ( n 1 ) / 4 ) ( Γ ( 1 + 1 2 β ) ) n j = 1 n Γ ( 1 + 1 2 j β ) .
Carlitz (1972) describes the partition function of dense hadronic matter in terms of a gamma function.
32: 5.14 Multidimensional Integrals
§5.14 Multidimensional Integrals
5.14.1 V n t 1 z 1 1 t 2 z 2 1 t n z n 1 d t 1 d t 2 d t n = Γ ( z 1 ) Γ ( z 2 ) Γ ( z n ) Γ ( 1 + z 1 + z 2 + + z n ) ,
Selberg-type Integrals
Dyson’s Integral
5.14.7 1 ( 2 π ) n [ π , π ] n 1 j < k n | e i θ j e i θ k | 2 b d θ 1 d θ n = Γ ( 1 + b n ) ( Γ ( 1 + b ) ) n , b > 1 / n .
33: 5.11 Asymptotic Expansions
§5.11 Asymptotic Expansions
§5.11(ii) Error Bounds and Exponential Improvement
For re-expansions of the remainder terms in (5.11.1) and (5.11.3) in series of incomplete gamma functions with exponential improvement (§2.11(iii)) in the asymptotic expansions, see Berry (1991), Boyd (1994), and Paris and Kaminski (2001, §6.4).
§5.11(iii) Ratios
34: 8.10 Inequalities
§8.10 Inequalities
8.10.1 x 1 a e x Γ ( a , x ) 1 , x > 0 , 0 < a 1 ,
8.10.2 γ ( a , x ) x a 1 a ( 1 e x ) , x > 0 , 0 < a 1 .
Padé Approximants
8.10.13 Γ ( n , n ) Γ ( n ) < 1 2 < Γ ( n , n 1 ) Γ ( n ) , n = 1 , 2 , 3 , .
35: 35.3 Multivariate Gamma and Beta Functions
§35.3 Multivariate Gamma and Beta Functions
§35.3(i) Definitions
§35.3(ii) Properties
35.3.6 Γ m ( a , , a ) = Γ m ( a ) .
35.3.7 B m ( a , b ) = Γ m ( a ) Γ m ( b ) Γ m ( a + b ) .
36: 8.12 Uniform Asymptotic Expansions for Large Parameter
§8.12 Uniform Asymptotic Expansions for Large Parameter
8.12.3 P ( a , z ) = 1 2 erfc ( η a / 2 ) S ( a , η ) ,
c 5 ( 0 ) = 27 45493 81517 36320 .
For other uniform asymptotic approximations of the incomplete gamma functions in terms of the function erfc see Paris (2002b) and Dunster (1996a).
Inverse Function
37: 5.9 Integral Representations
§5.9 Integral Representations
§5.9(i) Gamma Function
Hankel’s Loop Integral
Binet’s Formula
38: 5.4 Special Values and Extrema
§5.4 Special Values and Extrema
§5.4(i) Gamma Function
5.4.7 Γ ( 1 3 ) = 2.67893 85347 07747 63365 ,
5.4.11 Γ ( 1 ) = γ .
§5.4(iii) Extrema
39: 8.1 Special Notation
x real variable.
Γ ( z ) gamma function5.2(i)).
Unless otherwise indicated, primes denote derivatives with respect to the argument. The functions treated in this chapter are the incomplete gamma functions γ ( a , z ) , Γ ( a , z ) , γ ( a , z ) , P ( a , z ) , and Q ( a , z ) ; the incomplete beta functions B x ( a , b ) and I x ( a , b ) ; the generalized exponential integral E p ( z ) ; the generalized sine and cosine integrals si ( a , z ) , ci ( a , z ) , Si ( a , z ) , and Ci ( a , z ) . Alternative notations include: Prym’s functions P z ( a ) = γ ( a , z ) , Q z ( a ) = Γ ( a , z ) , Nielsen (1906a, pp. 25–26), Batchelder (1967, p. 63); ( a , z ) ! = γ ( a + 1 , z ) , [ a , z ] ! = Γ ( a + 1 , z ) , Dingle (1973); B ( a , b , x ) = B x ( a , b ) , I ( a , b , x ) = I x ( a , b ) , Magnus et al. (1966); Si ( a , x ) Si ( 1 a , x ) , Ci ( a , x ) Ci ( 1 a , x ) , Luke (1975).
40: Ranjan Roy