About the Project

functions f(ϵ,ℓ;r),h(ϵ,ℓ;r)

AdvancedHelp

(0.017 seconds)

31—40 of 443 matching pages

31: 33.15 Graphics
§33.15(i) Line Graphs of the Coulomb Functions f ( ϵ , ; r ) and h ( ϵ , ; r )
§33.15(ii) Surfaces of the Coulomb Functions f ( ϵ , ; r ) , h ( ϵ , ; r ) , s ( ϵ , ; r ) , and c ( ϵ , ; r )
32: Bille C. Carlson
In his paper Lauricella’s hypergeometric function F D (1963), he defined the R -function, a multivariate hypergeometric function that is homogeneous in its variables, each variable being paired with a parameter. …
33: 33.13 Complex Variable and Parameters
The functions F ( η , ρ ) , G ( η , ρ ) , and H ± ( η , ρ ) may be extended to noninteger values of by generalizing ( 2 + 1 ) ! = Γ ( 2 + 2 ) , and supplementing (33.6.5) by a formula derived from (33.2.8) with U ( a , b , z ) expanded via (13.2.42). …
34: 28.30 Expansions in Series of Eigenfunctions
Then every continuous 2 π -periodic function f ( x ) whose second derivative is square-integrable over the interval [ 0 , 2 π ] can be expanded in a uniformly and absolutely convergent series …
35: 33.2 Definitions and Basic Properties
§33.2(ii) Regular Solution F ( η , ρ )
The function F ( η , ρ ) is recessive (§2.7(iii)) at ρ = 0 , and is defined by … F ( η , ρ ) is a real and analytic function of ρ on the open interval 0 < ρ < , and also an analytic function of η when < η < . …
§33.2(iii) Irregular Solutions G ( η , ρ ) , H ± ( η , ρ )
As in the case of F ( η , ρ ) , the solutions H ± ( η , ρ ) and G ( η , ρ ) are analytic functions of ρ when 0 < ρ < . …
36: 36.12 Uniform Approximation of Integrals
36.12.1 I ( 𝐲 , k ) = exp ( i k f ( u ; 𝐲 ) ) g ( u , 𝐲 ) d u ,
As 𝐲 varies as many as K + 1 (real or complex) critical points of the smooth phase function f can coalesce in clusters of two or more. …Also, f is real analytic, and K + 2 f / u K + 2 > 0 for all 𝐲 such that all K + 1 critical points coincide. … with the K + 1 functions A ( 𝐲 ) and 𝐱 ( 𝐲 ) determined by correspondence of the K + 1 critical points of f and Φ K . …
36.12.6 A ( 𝐲 ) = f ( u ( 0 , 𝐲 ) ; 𝐲 ) ,
37: 6.20 Approximations
  • Hastings (1955) gives several minimax polynomial and rational approximations for E 1 ( x ) + ln x , x e x E 1 ( x ) , and the auxiliary functions f ( x ) and g ( x ) . These are included in Abramowitz and Stegun (1964, Ch. 5).

  • MacLeod (1996b) provides rational approximations for the sine and cosine integrals and for the auxiliary functions f and g , with accuracies up to 20S.

  • Luke (1969b, p. 25) gives a Chebyshev expansion near infinity for the confluent hypergeometric U -function13.2(i)) from which Chebyshev expansions near infinity for E 1 ( z ) , f ( z ) , and g ( z ) follow by using (6.11.2) and (6.11.3). Luke also includes a recursion scheme for computing the coefficients in the expansions of the U functions. If | ph z | < π the scheme can be used in backward direction.

  • 38: 16.12 Products
    16.12.3 ( F 1 2 ( a , b c ; z ) ) 2 = k = 0 ( 2 a ) k ( 2 b ) k ( c 1 2 ) k ( c ) k ( 2 c 1 ) k k ! F 3 4 ( 1 2 k , 1 2 ( 1 k ) , a + b c + 1 2 , 1 2 a + 1 2 , b + 1 2 , 3 2 k c ; 1 ) z k , | z | < 1 .
    39: 16.5 Integral Representations and Integrals
    In this event, the formal power-series expansion of the left-hand side (obtained from (16.2.1)) is the asymptotic expansion of the right-hand side as z 0 in the sector | ph ( z ) | ( p + 1 q δ ) π / 2 , where δ is an arbitrary small positive constant. …
    16.5.2 F q + 1 p + 1 ( a 0 , , a p b 0 , , b q ; z ) = Γ ( b 0 ) Γ ( a 0 ) Γ ( b 0 a 0 ) 0 1 t a 0 1 ( 1 t ) b 0 a 0 1 F q p ( a 1 , , a p b 1 , , b q ; z t ) d t , b 0 > a 0 > 0 ,
    40: 10.70 Zeros
    10.70.1 μ 1 16 t + μ 1 32 t 2 + ( μ 1 ) ( 5 μ + 19 ) 1536 t 3 + 3 ( μ 1 ) 2 512 t 4 + .