About the Project

functions Fℓ(η,ρ),Gℓ(η,ρ),H±ℓ(η,ρ)

AdvancedHelp

(0.013 seconds)

11—20 of 236 matching pages

11: Bille C. Carlson
In his paper Lauricella’s hypergeometric function F D (1963), he defined the R -function, a multivariate hypergeometric function that is homogeneous in its variables, each variable being paired with a parameter. …
12: 33.13 Complex Variable and Parameters
The functions F ( η , ρ ) , G ( η , ρ ) , and H ± ( η , ρ ) may be extended to noninteger values of by generalizing ( 2 + 1 ) ! = Γ ( 2 + 2 ) , and supplementing (33.6.5) by a formula derived from (33.2.8) with U ( a , b , z ) expanded via (13.2.42). …
13: 33.2 Definitions and Basic Properties
§33.2(ii) Regular Solution F ( η , ρ )
The function F ( η , ρ ) is recessive (§2.7(iii)) at ρ = 0 , and is defined by … F ( η , ρ ) is a real and analytic function of ρ on the open interval 0 < ρ < , and also an analytic function of η when < η < . …
§33.2(iii) Irregular Solutions G ( η , ρ ) , H ± ( η , ρ )
As in the case of F ( η , ρ ) , the solutions H ± ( η , ρ ) and G ( η , ρ ) are analytic functions of ρ when 0 < ρ < . …
14: 16.12 Products
16.12.3 ( F 1 2 ( a , b c ; z ) ) 2 = k = 0 ( 2 a ) k ( 2 b ) k ( c 1 2 ) k ( c ) k ( 2 c 1 ) k k ! F 3 4 ( 1 2 k , 1 2 ( 1 k ) , a + b c + 1 2 , 1 2 a + 1 2 , b + 1 2 , 3 2 k c ; 1 ) z k , | z | < 1 .
15: 16.5 Integral Representations and Integrals
In this event, the formal power-series expansion of the left-hand side (obtained from (16.2.1)) is the asymptotic expansion of the right-hand side as z 0 in the sector | ph ( z ) | ( p + 1 q δ ) π / 2 , where δ is an arbitrary small positive constant. …
16.5.2 F q + 1 p + 1 ( a 0 , , a p b 0 , , b q ; z ) = Γ ( b 0 ) Γ ( a 0 ) Γ ( b 0 a 0 ) 0 1 t a 0 1 ( 1 t ) b 0 a 0 1 F q p ( a 1 , , a p b 1 , , b q ; z t ) d t , b 0 > a 0 > 0 ,
16: 15.6 Integral Representations
The function 𝐅 ( a , b ; c ; z ) (not F ( a , b ; c ; z ) ) has the following integral representations:
15.6.1 𝐅 ( a , b ; c ; z ) = 1 Γ ( b ) Γ ( c b ) 0 1 t b 1 ( 1 t ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c > b > 0 .
15.6.2 𝐅 ( a , b ; c ; z ) = Γ ( 1 + b c ) 2 π i Γ ( b ) 0 ( 1 + ) t b 1 ( t 1 ) c b 1 ( 1 z t ) a d t , | ph ( 1 z ) | < π ; c b 1 , 2 , 3 , , b > 0 .
15.6.6 𝐅 ( a , b ; c ; z ) = 1 2 π i Γ ( a ) Γ ( b ) i i Γ ( a + t ) Γ ( b + t ) Γ ( t ) Γ ( c + t ) ( z ) t d t , | ph ( z ) | < π ; a , b 0 , 1 , 2 , .
15.6.8 𝐅 ( a , b ; c ; z ) = 1 Γ ( c d ) 0 1 𝐅 ( a , b ; d ; z t ) t d 1 ( 1 t ) c d 1 d t , | ph ( 1 z ) | < π ; c > d > 0 .
17: 16.18 Special Cases
The F 1 1 and F 1 2 functions introduced in Chapters 13 and 15, as well as the more general F q p functions introduced in the present chapter, are all special cases of the Meijer G -function. …
16.18.1 F q p ( a 1 , , a p b 1 , , b q ; z ) = ( k = 1 q Γ ( b k ) / k = 1 p Γ ( a k ) ) G p , q + 1 1 , p ( z ; 1 a 1 , , 1 a p 0 , 1 b 1 , , 1 b q ) = ( k = 1 q Γ ( b k ) / k = 1 p Γ ( a k ) ) G q + 1 , p p , 1 ( 1 z ; 1 , b 1 , , b q a 1 , , a p ) .
As a corollary, special cases of the F 1 1 and F 1 2 functions, including Airy functions, Bessel functions, parabolic cylinder functions, Ferrers functions, associated Legendre functions, and many orthogonal polynomials, are all special cases of the Meijer G -function. …
18: 15.4 Special Cases
15.4.20 F ( a , b ; c ; 1 ) = Γ ( c ) Γ ( c a b ) Γ ( c a ) Γ ( c b ) .
15.4.23 lim z 1 F ( a , b ; c ; z ) ( 1 z ) c a b = Γ ( c ) Γ ( a + b c ) Γ ( a ) Γ ( b ) .
15.4.26 F ( a , b ; a b + 1 ; 1 ) = Γ ( a b + 1 ) Γ ( 1 2 a + 1 ) Γ ( a + 1 ) Γ ( 1 2 a b + 1 ) .
15.4.31 F ( a , 1 2 + a ; 3 2 2 a ; 1 3 ) = ( 8 9 ) 2 a Γ ( 4 3 ) Γ ( 3 2 2 a ) Γ ( 3 2 ) Γ ( 4 3 2 a ) .
19: 33.6 Power-Series Expansions in ρ
33.6.1 F ( η , ρ ) = C ( η ) k = + 1 A k ( η ) ρ k ,
33.6.2 F ( η , ρ ) = C ( η ) k = + 1 k A k ( η ) ρ k 1 ,
33.6.4 A k ( η ) = ( i ) k 1 ( k 1 ) ! F 1 2 ( + 1 k , + 1 i η ; 2 + 2 ; 2 ) .
20: 15.2 Definitions and Analytical Properties
The hypergeometric function F ( a , b ; c ; z ) is defined by the Gauss seriesThe principal branch of 𝐅 ( a , b ; c ; z ) is an entire function of a , b , and c . …As a multivalued function of z , 𝐅 ( a , b ; c ; z ) is analytic everywhere except for possible branch points at z = 0 , 1 , and . The same properties hold for F ( a , b ; c ; z ) , except that as a function of c , F ( a , b ; c ; z ) in general has poles at c = 0 , 1 , 2 , . … For example, when a = m , m = 0 , 1 , 2 , , and c 0 , 1 , 2 , , F ( a , b ; c ; z ) is a polynomial: …