About the Project

fractional%20or%20multiple

AdvancedHelp

(0.002 seconds)

11—18 of 18 matching pages

11: 26.10 Integer Partitions: Other Restrictions
β–Ί p ⁑ ( π’Ÿ ⁒ 3 , n ) denotes the number of partitions of n into parts with difference at least 3, except that multiples of 3 must differ by at least 6. … β–Ί
Table 26.10.1: Partitions restricted by difference conditions, or equivalently with parts from A j , k .
β–Ί β–Ίβ–Ίβ–Ί
p ⁑ ( π’Ÿ , n ) p ⁑ ( π’Ÿ ⁒ 2 , n ) p ⁑ ( π’Ÿ ⁒ 2 , T , n ) p ⁑ ( π’Ÿ ⁒ 3 , n )
20 64 31 20 18
β–Ί
12: Bibliography W
β–Ί
  • H. S. Wall (1948) Analytic Theory of Continued Fractions. D. Van Nostrand Company, Inc., New York.
  • β–Ί
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • 13: 20.11 Generalizations and Analogs
    β–ΊIn the case z = 0 identities for theta functions become identities in the complex variable q , with | q | < 1 , that involve rational functions, power series, and continued fractions; see Adiga et al. (1985), McKean and Moll (1999, pp. 156–158), and Andrews et al. (1988, §10.7). …
    14: Bibliography B
    β–Ί
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • β–Ί
  • G. Blanch (1964) Numerical evaluation of continued fractions. SIAM Rev. 6 (4), pp. 383–421.
  • β–Ί
  • R. P. Brent (1978a) A Fortran multiple-precision arithmetic package. ACM Trans. Math. Software 4 (1), pp. 57–70.
  • β–Ί
  • R. P. Brent (1976) Fast multiple-precision evaluation of elementary functions. J. Assoc. Comput. Mach. 23 (2), pp. 242–251.
  • β–Ί
  • R. P. Brent (1978b) Algorithm 524: MP, A Fortran multiple-precision arithmetic package [A1]. ACM Trans. Math. Software 4 (1), pp. 71–81.
  • 15: Bibliography L
    β–Ί
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright Ο‰ function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • β–Ί
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • β–Ί
  • W. J. Lentz (1976) Generating Bessel functions in Mie scattering calculations using continued fractions. Applied Optics 15 (3), pp. 668–671.
  • β–Ί
  • L. Lorentzen and H. Waadeland (1992) Continued Fractions with Applications. Studies in Computational Mathematics, North-Holland Publishing Co., Amsterdam.
  • β–Ί
  • E. R. Love (1972b) Two index laws for fractional integrals and derivatives. J. Austral. Math. Soc. 14, pp. 385–410.
  • 16: Bibliography D
    β–Ί
  • H. Davenport (2000) Multiplicative Number Theory. 3rd edition, Graduate Texts in Mathematics, Vol. 74, Springer-Verlag, New York.
  • β–Ί
  • J. Deltour (1968) The computation of lattice frequency distribution functions by means of continued fractions. Physica 39 (3), pp. 413–423.
  • β–Ί
  • K. Dilcher (2008) On multiple zeros of Bernoulli polynomials. Acta Arith. 134 (2), pp. 149–155.
  • β–Ί
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • β–Ί
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • 17: Bibliography G
    β–Ί
  • I. Gargantini and P. Henrici (1967) A continued fraction algorithm for the computation of higher transcendental functions in the complex plane. Math. Comp. 21 (97), pp. 18–29.
  • β–Ί
  • G. Gasper (1975) Formulas of the Dirichlet-Mehler Type. In Fractional Calculus and its Applications, B. Ross (Ed.), Lecture Notes in Math., Vol. 457, pp. 207–215.
  • β–Ί
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • β–Ί
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • β–Ί
  • Ya. I. GranovskiΔ­, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 18: 3.8 Nonlinear Equations
    §3.8 Nonlinear Equations
    β–Ίhas n zeros in β„‚ , counting each zero according to its multiplicity. … β–ΊThe method converges locally and quadratically, except when the wanted quadratic factor is a multiple factor of q ⁑ ( z ) . … β–ΊConsider x = 20 and j = 19 . We have p ⁑ ( 20 ) = 19 ! and a 19 = 1 + 2 + β‹― + 20 = 210 . …