About the Project

for ratios

AdvancedHelp

(0.002 seconds)

41—50 of 415 matching pages

41: 4.14 Definitions and Periodicity
4.14.8 sin ( z + 2 k π ) = sin z ,
4.14.9 cos ( z + 2 k π ) = cos z ,
4.14.10 tan ( z + k π ) = tan z .
42: 5.4 Special Values and Extrema
5.4.3 | Γ ( i y ) | = ( π y sinh ( π y ) ) 1 / 2 ,
5.4.6 Γ ( 1 2 ) = π 1 / 2 = 1.77245 38509 05516 02729 ,
5.4.16 ψ ( i y ) = 1 2 y + π 2 coth ( π y ) ,
5.4.18 ψ ( 1 + i y ) = 1 2 y + π 2 coth ( π y ) .
43: 25.13 Periodic Zeta Function
25.13.1 F ( x , s ) n = 1 e 2 π i n x n s ,
25.13.2 F ( x , s ) = Γ ( 1 s ) ( 2 π ) 1 s ( e π i ( 1 s ) / 2 ζ ( 1 s , x ) + e π i ( s 1 ) / 2 ζ ( 1 s , 1 x ) ) , 0 < x < 1 , s > 1 ,
25.13.3 ζ ( 1 s , x ) = Γ ( s ) ( 2 π ) s ( e π i s / 2 F ( x , s ) + e π i s / 2 F ( x , s ) ) , s > 0 if 0 < x < 1 ; s > 1 if x = 1 .
44: 11.10 Anger–Weber Functions
11.10.1 𝐉 ν ( z ) = 1 π 0 π cos ( ν θ z sin θ ) d θ ,
11.10.6 f ( ν , z ) = ( z ν ) π z 2 sin ( π ν ) , w = 𝐉 ν ( z ) ,
11.10.7 f ( ν , z ) = 1 π z 2 ( z + ν + ( z ν ) cos ( π ν ) ) , w = 𝐄 ν ( z ) .
11.10.9 𝐄 ν ( z ) = sin ( 1 2 π ν ) S 1 ( ν , z ) cos ( 1 2 π ν ) S 2 ( ν , z ) ,
11.10.26 𝐄 0 ( z ) = 𝐇 0 ( z ) , 𝐄 1 ( z ) = 2 π 𝐇 1 ( z ) .
45: 5.5 Functional Relations
5.5.3 Γ ( z ) Γ ( 1 z ) = π / sin ( π z ) , z 0 , ± 1 , ,
5.5.4 ψ ( z ) ψ ( 1 z ) = π / tan ( π z ) , z 0 , ± 1 , .
5.5.5 Γ ( 2 z ) = π 1 / 2 2 2 z 1 Γ ( z ) Γ ( z + 1 2 ) .
5.5.6 Γ ( n z ) = ( 2 π ) ( 1 n ) / 2 n n z ( 1 / 2 ) k = 0 n 1 Γ ( z + k n ) .
5.5.7 k = 1 n 1 Γ ( k n ) = ( 2 π ) ( n 1 ) / 2 n 1 / 2 .
46: 9.9 Zeros
9.9.6 a k = T ( 3 8 π ( 4 k 1 ) ) ,
9.9.7 Ai ( a k ) = ( 1 ) k 1 V ( 3 8 π ( 4 k 1 ) ) ,
9.9.8 a k = U ( 3 8 π ( 4 k 3 ) ) ,
9.9.9 Ai ( a k ) = ( 1 ) k 1 W ( 3 8 π ( 4 k 3 ) ) .
9.9.10 b k = T ( 3 8 π ( 4 k 3 ) ) ,
47: 10.5 Wronskians and Cross-Products
10.5.1 𝒲 { J ν ( z ) , J ν ( z ) } = J ν + 1 ( z ) J ν ( z ) + J ν ( z ) J ν 1 ( z ) = 2 sin ( ν π ) / ( π z ) ,
10.5.2 𝒲 { J ν ( z ) , Y ν ( z ) } = J ν + 1 ( z ) Y ν ( z ) J ν ( z ) Y ν + 1 ( z ) = 2 / ( π z ) ,
10.5.3 𝒲 { J ν ( z ) , H ν ( 1 ) ( z ) } = J ν + 1 ( z ) H ν ( 1 ) ( z ) J ν ( z ) H ν + 1 ( 1 ) ( z ) = 2 i / ( π z ) ,
10.5.4 𝒲 { J ν ( z ) , H ν ( 2 ) ( z ) } = J ν + 1 ( z ) H ν ( 2 ) ( z ) J ν ( z ) H ν + 1 ( 2 ) ( z ) = 2 i / ( π z ) ,
10.5.5 𝒲 { H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) } = H ν + 1 ( 1 ) ( z ) H ν ( 2 ) ( z ) H ν ( 1 ) ( z ) H ν + 1 ( 2 ) ( z ) = 4 i / ( π z ) .
48: 10.54 Integral Representations
10.54.1 𝗃 n ( z ) = z n 2 n + 1 n ! 0 π cos ( z cos θ ) ( sin θ ) 2 n + 1 d θ .
49: 24.12 Zeros
24.12.2 3 4 + 1 2 n + 2 π < x 1 ( n ) < 3 4 + 1 2 n + 1 π ,
24.12.3 x 1 ( n ) 3 4 1 2 n + 1 π , n ,
24.12.9 3 2 π n + 1 3 ( n ! ) < y 2 ( n ) < 3 2 , n = 3 , 7 , 11 , ,
24.12.10 3 2 < y 2 ( n ) < 3 2 + π n + 1 3 ( n ! ) , n = 5 , 9 , 13 , ,
50: 9.2 Differential Equation
9.2.2 w = Ai ( z ) , Bi ( z ) , Ai ( z e 2 π i / 3 ) .
9.2.7 𝒲 { Ai ( z ) , Bi ( z ) } = 1 π ,
9.2.8 𝒲 { Ai ( z ) , Ai ( z e 2 π i / 3 ) } = e ± π i / 6 2 π ,
9.2.9 𝒲 { Ai ( z e 2 π i / 3 ) , Ai ( z e 2 π i / 3 ) } = 1 2 π i .
9.2.10 Bi ( z ) = e π i / 6 Ai ( z e 2 π i / 3 ) + e π i / 6 Ai ( z e 2 π i / 3 ) .