About the Project

for derivatives

AdvancedHelp

(0.003 seconds)

21—30 of 277 matching pages

21: 10.51 Recurrence Relations and Derivatives
§10.51 Recurrence Relations and Derivatives
β–Ί
( 1 z ⁒ d d z ) m ⁑ ( z n + 1 ⁒ f n ⁑ ( z ) ) = z n m + 1 ⁒ f n m ⁑ ( z ) , m = 0 , 1 , , n ,
β–Ί
( 1 z ⁒ d d z ) m ⁑ ( z n ⁒ f n ⁑ ( z ) ) = ( 1 ) m ⁒ z n m ⁒ f n + m ⁑ ( z ) , m = 0 , 1 , .
β–Ί
( 1 z ⁒ d d z ) m ⁑ ( z n + 1 ⁒ g n ⁑ ( z ) ) = z n m + 1 ⁒ g n m ⁑ ( z ) , m = 0 , 1 , , n ,
β–Ί
( 1 z ⁒ d d z ) m ⁑ ( z n ⁒ g n ⁑ ( z ) ) = z n m ⁒ g n + m ⁑ ( z ) , m = 0 , 1 , .
22: 29.11 Lamé Wave Equation
β–Ί
29.11.1 d 2 w d z 2 + ( h Ξ½ ⁒ ( Ξ½ + 1 ) ⁒ k 2 ⁒ sn 2 ⁑ ( z , k ) + k 2 ⁒ Ο‰ 2 ⁒ sn 4 ⁑ ( z , k ) ) ⁒ w = 0 ,
23: 16.14 Partial Differential Equations
β–Ί
x ⁒ ( 1 x ) ⁒ 2 F 1 x 2 + y ⁒ ( 1 x ) ⁒ 2 F 1 x ⁒ y + ( γ ( α + β + 1 ) ⁒ x ) ⁒ F 1 x β ⁒ y ⁒ F 1 y α ⁒ β ⁒ F 1 = 0 ,
β–Ί
y ⁒ ( 1 y ) ⁒ 2 F 1 y 2 + x ⁒ ( 1 y ) ⁒ 2 F 1 x ⁒ y + ( γ ( α + β + 1 ) ⁒ y ) ⁒ F 1 y β ⁒ x ⁒ F 1 x α ⁒ β ⁒ F 1 = 0 ,
β–Ί
x ⁒ ( 1 x ) ⁒ 2 F 2 x 2 x ⁒ y ⁒ 2 F 2 x ⁒ y + ( γ ( α + β + 1 ) ⁒ x ) ⁒ F 2 x β ⁒ y ⁒ F 2 y α ⁒ β ⁒ F 2 = 0 ,
β–Ί
x ⁒ ( 1 x ) ⁒ 2 F 4 x 2 2 ⁒ x ⁒ y ⁒ 2 F 4 x ⁒ y y 2 ⁒ 2 F 4 y 2 + ( γ ( α + β + 1 ) ⁒ x ) ⁒ F 4 x ( α + β + 1 ) ⁒ y ⁒ F 4 y α ⁒ β ⁒ F 4 = 0 ,
β–Ί
y ⁒ ( 1 y ) ⁒ 2 F 4 y 2 2 ⁒ x ⁒ y ⁒ 2 F 4 x ⁒ y x 2 ⁒ 2 F 4 x 2 + ( γ ( α + β + 1 ) ⁒ y ) ⁒ F 4 y ( α + β + 1 ) ⁒ x ⁒ F 4 x α ⁒ β ⁒ F 4 = 0 .
24: 9.9 Zeros
β–ΊThey are denoted by a k , a k , b k , b k , respectively, arranged in ascending order of absolute value for k = 1 , 2 , . β–ΊThey lie in the sectors 1 3 ⁒ Ο€ < ph ⁑ z < 1 2 ⁒ Ο€ and 1 2 ⁒ Ο€ < ph ⁑ z < 1 3 ⁒ Ο€ , and are denoted by Ξ² k , Ξ² k , respectively, in the former sector, and by Ξ² k ¯ , Ξ² k ¯ , in the conjugate sector, again arranged in ascending order of absolute value (modulus) for k = 1 , 2 , . See §9.3(ii) for visualizations. … β–Ί
§9.9(iii) Derivatives With Respect to k
β–Ί
Ai ⁑ ( a k ) = ( 1 ) k 1 ⁒ ( a k ⁒ d a k d k ) 1 / 2 .
β–ΊFor error bounds for the asymptotic expansions of a k , b k , a k , and b k see Pittaluga and Sacripante (1991), and a conjecture given in Fabijonas and Olver (1999). …
25: 30.2 Differential Equations
β–Ί
30.2.1 d d z ⁑ ( ( 1 z 2 ) ⁒ d w d z ) + ( λ + γ 2 ⁒ ( 1 z 2 ) μ 2 1 z 2 ) ⁒ w = 0 .
β–Ί
30.2.2 d 2 g d t 2 + ( λ + 1 4 + γ 2 ⁒ sin 2 ⁑ t μ 2 1 4 sin 2 ⁑ t ) ⁒ g = 0 ,
β–Ί
30.2.4 ( ΢ 2 γ 2 ) ⁒ d 2 w d ΢ 2 + 2 ⁒ ΢ ⁒ d w d ΢ + ( ΢ 2 λ γ 2 γ 2 ⁒ μ 2 ΢ 2 γ 2 ) ⁒ w = 0 .
26: 15.5 Derivatives and Contiguous Functions
§15.5 Derivatives and Contiguous Functions
β–Ί
§15.5(i) Differentiation Formulas
β–Ί β–Ί
15.5.10 ( z ⁒ d d z ⁑ z ) n = z n ⁒ d n d z n ⁑ z n , n = 1 , 2 , 3 , .
β–Ί
27: 30.13 Wave Equation in Prolate Spheroidal Coordinates
β–Ί
30.13.3 h ξ 2 = ( x ξ ) 2 + ( y ξ ) 2 + ( z ξ ) 2 = c 2 ⁒ ( ξ 2 η 2 ) ξ 2 1 ,
β–Ί β–Ί β–Ί
30.13.6 2 = 1 h ΞΎ ⁒ h Ξ· ⁒ h Ο• ⁒ ( ΞΎ ⁑ ( h Ξ· ⁒ h Ο• h ΞΎ ⁒ ΞΎ ) + Ξ· ⁑ ( h ΞΎ ⁒ h Ο• h Ξ· ⁒ Ξ· ) + Ο• ⁑ ( h ΞΎ ⁒ h Ξ· h Ο• ⁒ Ο• ) ) = 1 c 2 ⁒ ( ΞΎ 2 Ξ· 2 ) ⁒ ( ΞΎ ⁑ ( ( ΞΎ 2 1 ) ⁒ ΞΎ ) + Ξ· ⁑ ( ( 1 Ξ· 2 ) ⁒ Ξ· ) + ΞΎ 2 Ξ· 2 ( ΞΎ 2 1 ) ⁒ ( 1 Ξ· 2 ) ⁒ 2 Ο• 2 ) .
β–Ί
30.13.11 d 2 w 3 d Ο• 2 + ΞΌ 2 ⁒ w 3 = 0 ,
28: 4.24 Inverse Trigonometric Functions: Further Properties
β–Ί
§4.24(ii) Derivatives
β–Ί
4.24.7 d d z ⁑ arcsin ⁑ z = ( 1 z 2 ) 1 / 2 ,
β–Ί
4.24.8 d d z ⁑ arccos ⁑ z = ( 1 z 2 ) 1 / 2 ,
β–Ί
4.24.9 d d z ⁑ arctan ⁑ z = 1 1 + z 2 .
β–Ί
4.24.12 d d z ⁑ arccot ⁑ z = 1 1 + z 2 .
29: 10.73 Physical Applications
β–Ί
10.73.1 2 V = 1 r ⁒ r ⁑ ( r ⁒ V r ) + 1 r 2 ⁒ 2 V Ο• 2 + 2 V z 2 = 0 ,
β–Ί
10.73.2 2 ψ = 1 c 2 ⁒ 2 ψ t 2 ,
β–Ί
10.73.3 4 W + λ 2 ⁒ 2 W t 2 = 0 .
β–Ί
10.73.4 ( 2 + k 2 ) ⁒ f = 1 ρ 2 ⁒ ρ ⁑ ( ρ 2 ⁒ f ρ ) + 1 ρ 2 ⁒ sin ⁑ ΞΈ ⁒ ΞΈ ⁑ ( sin ⁑ ΞΈ ⁒ f ΞΈ ) + 1 ρ 2 ⁒ sin 2 ⁑ ΞΈ ⁒ 2 f Ο• 2 + k 2 ⁒ f .
30: 32.1 Special Notation
β–ΊUnless otherwise noted, primes indicate derivatives with respect to the argument. …