About the Project

first

AdvancedHelp

(0.001 seconds)

11—20 of 417 matching pages

11: 26.21 Tables
§26.21 Tables
Abramowitz and Stegun (1964, Chapter 24) tabulates binomial coefficients ( m n ) for m up to 50 and n up to 25; extends Table 26.4.1 to n = 10 ; tabulates Stirling numbers of the first and second kinds, s ( n , k ) and S ( n , k ) , for n up to 25 and k up to n ; tabulates partitions p ( n ) and partitions into distinct parts p ( 𝒟 , n ) for n up to 500. … It also contains a table of Gaussian polynomials up to [ 12 6 ] q . …
12: 14.18 Sums
14.18.1 𝖯 ν ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = 𝖯 ν ( cos θ 1 ) 𝖯 ν ( cos θ 2 ) + 2 m = 1 ( 1 ) m 𝖯 ν m ( cos θ 1 ) 𝖯 ν m ( cos θ 2 ) cos ( m ϕ ) ,
14.18.2 𝖯 n ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = m = n n ( 1 ) m 𝖯 n m ( cos θ 1 ) 𝖯 n m ( cos θ 2 ) cos ( m ϕ ) .
14.18.3 𝖰 ν ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = 𝖯 ν ( cos θ 1 ) 𝖰 ν ( cos θ 2 ) + 2 m = 1 ( 1 ) m 𝖯 ν m ( cos θ 1 ) 𝖰 ν m ( cos θ 2 ) cos ( m ϕ ) .
14.18.6 ( x y ) k = 0 n ( 2 k + 1 ) P k ( x ) P k ( y ) = ( n + 1 ) ( P n + 1 ( x ) P n ( y ) P n ( x ) P n + 1 ( y ) ) ,
14.18.7 ( x y ) k = 0 n ( 2 k + 1 ) P k ( x ) Q k ( y ) = ( n + 1 ) ( P n + 1 ( x ) Q n ( y ) P n ( x ) Q n + 1 ( y ) ) 1 .
13: 14.9 Connection Formulas
§14.9(i) Connections Between 𝖯 ν ± μ ( x ) , 𝖯 ν 1 ± μ ( x ) , 𝖰 ν ± μ ( x ) , 𝖰 ν 1 μ ( x )
𝖯 ν 1 μ ( x ) = 𝖯 ν μ ( x ) ,
𝖯 ν 1 μ ( x ) = 𝖯 ν μ ( x ) ,
§14.9(ii) Connections Between 𝖯 ν ± μ ( ± x ) , 𝖰 ν μ ( ± x ) , 𝖰 ν μ ( x )
§14.9(iii) Connections Between P ν ± μ ( x ) , P ν 1 ± μ ( x ) , 𝑸 ν ± μ ( x ) , 𝑸 ν 1 μ ( x )
14: 29.17 Other Solutions
29.17.1 F ( z ) = E ( z ) i K z d u ( E ( u ) ) 2 .
They are algebraic functions of sn ( z , k ) , cn ( z , k ) , and dn ( z , k ) , and have primitive period 8 K . … Lamé–Wangerin functions are solutions of (29.2.1) with the property that ( sn ( z , k ) ) 1 / 2 w ( z ) is bounded on the line segment from i K to 2 K + i K . …
15: 14.4 Graphics
See accompanying text
Figure 14.4.1: 𝖯 ν 0 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
See accompanying text
Figure 14.4.2: 𝖰 ν 0 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
See accompanying text
Figure 14.4.3: 𝖯 ν 1 / 2 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
See accompanying text
Figure 14.4.4: 𝖰 ν 1 / 2 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
See accompanying text
Figure 14.4.5: 𝖯 ν 1 ( x ) , ν = 0 , 1 2 , 1 , 2 , 4 . Magnify
16: 14.33 Tables
  • Abramowitz and Stegun (1964, Chapter 8) tabulates 𝖯 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 5–8D; 𝖯 n ( x ) for n = 1 ( 1 ) 4 , 9 , 10 , x = 0 ( .01 ) 1 , 5–7D; 𝖰 n ( x ) and 𝖰 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 6–8D; P n ( x ) and P n ( x ) for n = 0 ( 1 ) 5 , 9 , 10 , x = 1 ( .2 ) 10 , 6S; Q n ( x ) and Q n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 1 ( .2 ) 10 , 6S. (Here primes denote derivatives with respect to x .)

  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 0 ( .1 ) 1 , 7D; 𝖯 n ( cos θ ) for n = 1 ( 1 ) 4 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖰 n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 0 ( .1 ) 0.9 , 8S; 𝖰 n ( cos θ ) for n = 0 ( 1 ) 3 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖯 n m ( x ) for m = 1 ( 1 ) 4 , n m = 0 ( 1 ) 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ( x ) for m = 1 ( 1 ) 4 , n = 0 ( 1 ) 2 , 10 , 8S; 𝖯 ν m ( cos θ ) for m = 0 ( 1 ) 3 , ν = 0 ( .25 ) 5 , θ = 0 ( 15 ) 90 , 5D; P n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 1 ( 1 ) 10 , 7S; Q n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 2 ( 1 ) 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 ν -zeros of 𝖯 ν m ( cos θ ) and of its derivative for m = 0 ( 1 ) 4 , θ = 10 , 30 , 150 .

  • Belousov (1962) tabulates 𝖯 n m ( cos θ ) (normalized) for m = 0 ( 1 ) 36 , n m = 0 ( 1 ) 56 , θ = 0 ( 2.5 ) 90 , 6D.

  • Žurina and Karmazina (1964, 1965) tabulate the conical functions 𝖯 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ ( x ) for τ = 0 ( .01 ) 50 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7D. Auxiliary tables are included to facilitate computation for larger values of τ when 1 < x < 1 .

  • Žurina and Karmazina (1963) tabulates the conical functions 𝖯 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 0.9 ( .1 ) 0.9 , 7S; P 1 2 + i τ 1 ( x ) for τ = 0 ( .01 ) 25 , x = 1.1 ( .1 ) 2 ( .2 ) 5 ( .5 ) 10 ( 10 ) 60 , 7S. Auxiliary tables are included to assist computation for larger values of τ when 1 < x < 1 .

  • 17: 29.4 Graphics
    See accompanying text
    Figure 29.4.13: 𝐸𝑐 1.5 m ( x , 0.5 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 1.85407 . Magnify
    See accompanying text
    Figure 29.4.14: 𝐸𝑠 1.5 m ( x , 0.5 ) for 2 K x 2 K , m = 1 , 2 , 3 . K = 1.85407 . Magnify
    See accompanying text
    Figure 29.4.15: 𝐸𝑐 1.5 m ( x , 0.1 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 1.61244 . Magnify
    See accompanying text
    Figure 29.4.16: 𝐸𝑠 1.5 m ( x , 0.1 ) for 2 K x 2 K , m = 1 , 2 , 3 . K = 1.61244 . Magnify
    See accompanying text
    Figure 29.4.17: 𝐸𝑐 1.5 m ( x , 0.9 ) for 2 K x 2 K , m = 0 , 1 , 2 . K = 2.57809 . Magnify
    18: 10.26 Graphics
    See accompanying text
    Figure 10.26.1: I 0 ( x ) , I 1 ( x ) , K 0 ( x ) , K 1 ( x ) , 0 x 3 . Magnify
    See accompanying text
    Figure 10.26.2: e x I 0 ( x ) , e x I 1 ( x ) , e x K 0 ( x ) , e x K 1 ( x ) , 0 x 10 . Magnify
    See accompanying text
    Figure 10.26.7: I ~ 1 / 2 ( x ) , K ~ 1 / 2 ( x ) , 0.01 x 3 . Magnify
    See accompanying text
    Figure 10.26.8: I ~ 1 ( x ) , K ~ 1 ( x ) , 0.01 x 3 . Magnify
    See accompanying text
    Figure 10.26.9: I ~ 5 ( x ) , K ~ 5 ( x ) , 0.01 x 3 . Magnify
    19: 14.5 Special Values
    In this subsection K ( k ) and E ( k ) denote the complete elliptic integrals of the first and second kinds; see §19.2(ii). …
    14.5.28 𝖯 2 ( x ) = P 2 ( x ) = 3 x 2 1 2 ,
    20: 22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
    22.12.2 2 K k sn ( 2 K t , k ) = n = π sin ( π ( t ( n + 1 2 ) τ ) ) = n = ( m = ( 1 ) m t m ( n + 1 2 ) τ ) ,
    22.12.8 2 K dc ( 2 K t , k ) = n = π sin ( π ( t + 1 2 n τ ) ) = n = ( m = ( 1 ) m t + 1 2 m n τ ) ,
    22.12.11 2 K ns ( 2 K t , k ) = n = π sin ( π ( t n τ ) ) = n = ( m = ( 1 ) m t m n τ ) ,
    22.12.12 2 K ds ( 2 K t , k ) = n = ( 1 ) n π sin ( π ( t n τ ) ) = n = ( m = ( 1 ) m + n t m n τ ) ,