About the Project

exponential function

AdvancedHelp

(0.019 seconds)

11—20 of 414 matching pages

11: 17.3 q -Elementary and q -Special Functions
q -Exponential Functions
17.3.1 e q ( x ) = n = 0 ( 1 q ) n x n ( q ; q ) n = 1 ( ( 1 q ) x ; q ) ,
17.3.2 E q ( x ) = n = 0 ( 1 q ) n q ( n 2 ) x n ( q ; q ) n = ( ( 1 q ) x ; q ) .
17.3.4 Sin q ( x ) = 1 2 i ( E q ( i x ) E q ( i x ) ) = n = 0 ( 1 q ) 2 n + 1 q n ( 2 n + 1 ) ( 1 ) n x 2 n + 1 ( q ; q ) 2 n + 1 .
17.3.6 Cos q ( x ) = 1 2 ( E q ( i x ) + E q ( i x ) ) = n = 0 ( 1 q ) 2 n q n ( 2 n 1 ) ( 1 ) n x 2 n ( q ; q ) 2 n .
12: 17.18 Methods of Computation
For computation of the q -exponential function see Gabutti and Allasia (2008). …
13: 20.8 Watson’s Expansions
20.8.1 θ 2 ( 0 , q ) θ 3 ( z , q ) θ 4 ( z , q ) θ 2 ( z , q ) = 2 n = ( 1 ) n q n 2 e i 2 n z q n e i z + q n e i z .
14: 9.5 Integral Representations
9.5.3 Bi ( x ) = 1 π 0 exp ( 1 3 t 3 + x t ) d t + 1 π 0 sin ( 1 3 t 3 + x t ) d t .
9.5.4 Ai ( z ) = 1 2 π i e π i / 3 e π i / 3 exp ( 1 3 t 3 z t ) d t ,
9.5.5 Bi ( z ) = 1 2 π e π i / 3 exp ( 1 3 t 3 z t ) d t + 1 2 π e π i / 3 exp ( 1 3 t 3 z t ) d t .
9.5.6 Ai ( z ) = 3 2 π 0 exp ( t 3 3 z 3 3 t 3 ) d t , | ph z | < 1 6 π .
9.5.7 Ai ( z ) = e ζ π 0 exp ( z 1 / 2 t 2 ) cos ( 1 3 t 3 ) d t , | ph z | < π .
15: 36.11 Leading-Order Asymptotics
36.11.3 Ψ 2 ( 0 , y ) = { π / y ( exp ( 1 4 i π ) + o ( 1 ) ) , y + , π / | y | exp ( 1 4 i π ) ( 1 + i 2 exp ( 1 4 i y 2 ) + o ( 1 ) ) , y .
36.11.4 Ψ 3 ( x , 0 , 0 ) = 2 π ( 5 | x | 3 ) 1 / 8 { exp ( 2 2 ( x / 5 ) 5 / 4 ) ( cos ( 2 2 ( x / 5 ) 5 / 4 1 8 π ) + o ( 1 ) ) , x + , cos ( 4 ( | x | / 5 ) 5 / 4 1 4 π ) + o ( 1 ) , x .
36.11.5 Ψ 3 ( 0 , y , 0 ) = Ψ 3 ( 0 , y , 0 ) ¯ = exp ( 1 4 i π ) π / y ( 1 ( i / 3 ) exp ( 3 2 i ( 2 y / 5 ) 5 / 3 ) + o ( 1 ) ) , y + .
36.11.7 Ψ ( E ) ( 0 , 0 , z ) = π z ( i + 3 exp ( 4 27 i z 3 ) + o ( 1 ) ) , z ± ,
36.11.8 Ψ ( H ) ( 0 , 0 , z ) = 2 π z ( 1 i 3 exp ( 1 27 i z 3 ) + o ( 1 ) ) , z ± .
16: 7.9 Continued Fractions
7.9.1 π e z 2 erfc z = z z 2 + 1 2 1 + 1 z 2 + 3 2 1 + 2 z 2 + , z > 0 ,
7.9.2 π e z 2 erfc z = 2 z 2 z 2 + 1 1 2 2 z 2 + 5 3 4 2 z 2 + 9 , z > 0 ,
17: 4.7 Derivatives and Differential Equations
§4.7(ii) Exponentials and Powers
The general solution of the differential equation …
4.7.13 w = exp ( f ( z ) d z ) + constant .
18: 13.27 Mathematical Applications
Vilenkin (1968, Chapter 8) constructs irreducible representations of this group, in which the diagonal matrices correspond to operators of multiplication by an exponential function. …
19: 4.14 Definitions and Periodicity
4.14.1 sin z = e i z e i z 2 i ,
4.14.2 cos z = e i z + e i z 2 ,
4.14.3 cos z ± i sin z = e ± i z ,
20: 13.26 Addition and Multiplication Theorems
13.26.2 e 1 2 y ( x + y x ) μ + 1 2 n = 0 ( 1 2 + μ κ ) n ( 1 + 2 μ ) n n ! ( y x ) n M κ 1 2 n , μ + 1 2 n ( x ) ,
13.26.3 e 1 2 y ( x + y x ) κ n = 0 ( 1 2 + μ κ ) n y n n ! ( x + y ) n M κ n , μ ( x ) , ( y / x ) > 1 2 ,
13.26.5 e 1 2 y ( x + y x ) μ + 1 2 n = 0 ( 1 2 + μ + κ ) n ( 1 + 2 μ ) n n ! ( y x ) n M κ + 1 2 n , μ + 1 2 n ( x ) ,
13.26.6 e 1 2 y ( x x + y ) κ n = 0 ( 1 2 + μ + κ ) n y n n ! ( x + y ) n M κ + n , μ ( x ) , ( ( y + x ) / x ) > 1 2 .
13.26.12 e 1 2 y ( x x + y ) κ n = 0 1 n ! ( y x + y ) n W κ + n , μ ( x ) , ( y / x ) > 1 2 .