About the Project

exponential%20growth

AdvancedHelp

(0.002 seconds)

21—30 of 469 matching pages

21: Daniel W. Lozier
Then he transferred to NIST (then known as the National Bureau of Standards), where he collaborated for several years with the Building and Fire Research Laboratory developing and applying finite-difference and spectral methods to differential equation models of fire growth. …
22: 36.4 Bifurcation Sets
x = 9 20 z 2 .
x = 3 20 z 2 ,
36.4.11 x + i y = z 2 exp ( 2 3 i π m ) , m = 0 , 1 , 2 .
x = 1 12 z 2 ( exp ( 2 τ ) ± 2 exp ( τ ) ) ,
y = 1 12 z 2 ( exp ( 2 τ ) ± 2 exp ( τ ) ) , τ < .
23: 1.14 Integral Transforms
1.14.3 1 2 ( f ( u + ) + f ( u ) ) = 1 2 π F ( x ) e i x u d x ,
Assume that f ( t ) is piecewise continuous on [ 0 , ) and of exponential growth, that is, constants M and α exist such that … where f a ( t ) = e a t f ( t ) . …
1.14.25 f ( s ) = 1 1 e a s 0 a e s t f ( t ) d t .
1.14.26 f ( s ) = 1 1 + e a s 0 a e s t f ( t ) d t .
24: 36.2 Catastrophes and Canonical Integrals
36.2.6 Ψ ( E ) ( 𝐱 ) = 2 π / 3 exp ( i ( 4 27 z 3 + 1 3 x z 1 4 π ) ) exp ( 7 π i / 12 ) exp ( π i / 12 ) exp ( i ( u 6 + 2 z u 4 + ( z 2 + x ) u 2 + y 2 12 u 2 ) ) d u ,
Ψ ( E ) ( 𝐱 ) = 4 π 3 1 / 3 exp ( i ( 2 27 z 3 1 3 x z ) ) ( exp ( i π 6 ) F + ( 𝐱 ) + exp ( i π 6 ) F ( 𝐱 ) ) ,
36.2.28 Ψ ( E ) ( 0 , 0 , z ) = Ψ ( E ) ( 0 , 0 , z ) ¯ = 2 π π z 27 exp ( 2 27 i z 3 ) ( J 1 / 6 ( 2 27 z 3 ) + i J 1 / 6 ( 2 27 z 3 ) ) , z 0 ,
36.2.29 Ψ ( H ) ( 0 , 0 , z ) = Ψ ( H ) ( 0 , 0 , z ) ¯ = 2 1 / 3 3 exp ( 1 27 i z 3 ) Ψ ( E ) ( 0 , 0 , z 2 2 / 3 ) , < z < .
25: 28.29 Definitions and Basic Properties
iff e π i ν is an eigenvalue of the matrix …
28.29.10 F ν ( z ) = e i ν z P ν ( z ) ,
A nontrivial solution w ( z ) is either a Floquet solution with respect to ν , or w ( z + π ) e i ν π w ( z ) is a Floquet solution with respect to ν . … Its order of growth for | λ | is exactly 1 2 ; see Magnus and Winkler (1966, Chapter II, pp. 19–28). …
26: 6.8 Inequalities
§6.8 Inequalities
6.8.1 1 2 ln ( 1 + 2 x ) < e x E 1 ( x ) < ln ( 1 + 1 x ) ,
6.8.2 x x + 1 < x e x E 1 ( x ) < x + 1 x + 2 ,
6.8.3 x ( x + 3 ) x 2 + 4 x + 2 < x e x E 1 ( x ) < x 2 + 5 x + 2 x 2 + 6 x + 6 .
27: 12.19 Tables
  • Karpov and Čistova (1968) includes e 1 4 x 2 D p ( x ) and e 1 4 x 2 D p ( i x ) for x = 0 ( .01 ) 5 and x 1 = 0(.001 or .0001)5, p = 1 ( .1 ) 1 , 7D or 8S.

  • Murzewski and Sowa (1972) includes D n ( x ) ( = U ( n 1 2 , x ) ) for n = 1 ( 1 ) 20 , x = 0 ( .05 ) 3 , 7S.

  • 28: 6.5 Further Interrelations
    §6.5 Further Interrelations
    6.5.1 E 1 ( x ± i 0 ) = Ei ( x ) i π ,
    6.5.2 Ei ( x ) = 1 2 ( E 1 ( x + i 0 ) + E 1 ( x i 0 ) ) ,
    6.5.3 1 2 ( Ei ( x ) + E 1 ( x ) ) = Shi ( x ) = i Si ( i x ) ,
    6.5.6 Ci ( z ) = 1 2 ( E 1 ( i z ) + E 1 ( i z ) ) ,
    29: 20.11 Generalizations and Analogs
    20.11.1 G ( m , n ) = k = 0 n 1 e π i k 2 m / n ;
    20.11.2 1 n G ( m , n ) = 1 n k = 0 n 1 e π i k 2 m / n = e π i / 4 m j = 0 m 1 e π i j 2 n / m = e π i / 4 m G ( n , m ) .
    With the substitutions a = q e 2 i z , b = q e 2 i z , with q = e i π τ , we have …
    30: Bibliography H
  • A. J. S. Hamilton (2001) Formulae for growth factors in expanding universes containing matter and a cosmological constant. Monthly Notices Roy. Astronom. Soc. 322 (2), pp. 419–425.
  • F. E. Harris (2000) Spherical Bessel expansions of sine, cosine, and exponential integrals. Appl. Numer. Math. 34 (1), pp. 95–98.
  • T. E. Hull and A. Abrham (1986) Variable precision exponential function. ACM Trans. Math. Software 12 (2), pp. 79–91.
  • M. N. Huxley (2003) Exponential sums and lattice points. III. Proc. London Math. Soc. (3) 87 (3), pp. 591–609.