About the Project

expansions in series of hypergeometric functions

AdvancedHelp

(0.025 seconds)

21—30 of 63 matching pages

21: 13.2 Definitions and Basic Properties
In effect, the regular singularities of the hypergeometric differential equation at b and coalesce into an irregular singularity at . … The first two standard solutions are: … The series (13.2.2) and (13.2.3) converge for all z . M ( a , b , z ) is entire in z and a , and is a meromorphic function of b . …
Kummer’s Transformations
22: 15.19 Methods of Computation
§15.19 Methods of Computation
For z it is always possible to apply one of the linear transformations in §15.8(i) in such a way that the hypergeometric function is expressed in terms of hypergeometric functions with an argument in the interval [ 0 , 1 2 ] . … The representation (15.6.1) can be used to compute the hypergeometric function in the sector | ph ( 1 z ) | < π . … In Colman et al. (2011) an algorithm is described that uses expansions in continued fractions for high-precision computation of the Gauss hypergeometric function, when the variable and parameters are real and one of the numerator parameters is a positive integer. …
23: 35.8 Generalized Hypergeometric Functions of Matrix Argument
§35.8 Generalized Hypergeometric Functions of Matrix Argument
The generalized hypergeometric function F q p with matrix argument 𝐓 𝓢 , numerator parameters a 1 , , a p , and denominator parameters b 1 , , b q is … If a j + 1 2 ( k + 1 ) for some j , k satisfying 1 j p , 1 k m , then the series expansion (35.8.1) terminates. … Multidimensional Mellin–Barnes integrals are established in Ding et al. (1996) for the functions F q p and F p p + 1 of matrix argument. A similar result for the F 1 0 function of matrix argument is given in Faraut and Korányi (1994, p. 346). …
24: Bibliography F
  • S. Farid Khwaja and A. B. Olde Daalhuis (2014) Uniform asymptotic expansions for hypergeometric functions with large parameters IV. Anal. Appl. (Singap.) 12 (6), pp. 667–710.
  • J. L. Fields and J. Wimp (1961) Expansions of hypergeometric functions in hypergeometric functions. Math. Comp. 15 (76), pp. 390–395.
  • W. B. Ford (1960) Studies on Divergent Series and Summability & The Asymptotic Developments of Functions Defined by Maclaurin Series. Chelsea Publishing Co., New York.
  • C. L. Frenzen and R. Wong (1986) Asymptotic expansions of the Lebesgue constants for Jacobi series. Pacific J. Math. 122 (2), pp. 391–415.
  • T. Fukushima (2012) Series expansions of symmetric elliptic integrals. Math. Comp. 81 (278), pp. 957–990.
  • 25: 13.31 Approximations
    §13.31 Approximations
    §13.31(i) Chebyshev-Series Expansions
    Luke (1969b, pp. 35 and 25) provides Chebyshev-series expansions of M ( a , b , x ) and U ( a , b , x ) that include the intervals 0 x α and α x < , respectively, where α is an arbitrary positive constant. … In Luke (1977a) the following rational approximation is given, together with its rate of convergence. …
    13.31.1 A n ( z ) = s = 0 n ( n ) s ( n + 1 ) s ( a ) s ( b ) s ( a + 1 ) s ( b + 1 ) s ( n ! ) 2 F 3 3 ( n + s , n + 1 + s , 1 1 + s , a + 1 + s , b + 1 + s ; z ) ,
    26: 16.4 Argument Unity
    The function F 2 3 ( a , b , c ; d , e ; 1 ) is analytic in the parameters a , b , c , d , e when its series expansion converges and the bottom parameters are not negative integers or zero. …
    27: Bibliography G
  • F. Gao and V. J. W. Guo (2013) Contiguous relations and summation and transformation formulae for basic hypergeometric series. J. Difference Equ. Appl. 19 (12), pp. 2029–2042.
  • G. Gasper and M. Rahman (1990) Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge.
  • L. Gatteschi (1990) New inequalities for the zeros of confluent hypergeometric functions. In Asymptotic and computational analysis (Winnipeg, MB, 1989), pp. 175–192.
  • W. Gautschi (2002b) Gauss quadrature approximations to hypergeometric and confluent hypergeometric functions. J. Comput. Appl. Math. 139 (1), pp. 173–187.
  • R. A. Gustafson (1987) Multilateral summation theorems for ordinary and basic hypergeometric series in U ( n ) . SIAM J. Math. Anal. 18 (6), pp. 1576–1596.
  • 28: 13.14 Definitions and Basic Properties
    The seriesIn general M κ , μ ( z ) and W κ , μ ( z ) are many-valued functions of z with branch points at z = 0 and z = . The principal branches correspond to the principal branches of the functions z 1 2 + μ and U ( 1 2 + μ κ , 1 + 2 μ , z ) on the right-hand sides of the equations (13.14.2) and (13.14.3); compare §4.2(i). … Although M κ , μ ( z ) does not exist when 2 μ = 1 , 2 , 3 , , many formulas containing M κ , μ ( z ) continue to apply in their limiting form. … Except when z = 0 , each branch of the functions M κ , μ ( z ) / Γ ( 2 μ + 1 ) and W κ , μ ( z ) is entire in κ and μ . …
    29: Bibliography V
  • H. Van de Vel (1969) On the series expansion method for computing incomplete elliptic integrals of the first and second kinds. Math. Comp. 23 (105), pp. 61–69.
  • R. S. Varma (1941) An infinite series of Weber’s parabolic cylinder functions. Proc. Benares Math. Soc. (N.S.) 3, pp. 37.
  • H. Volkmer and J. J. Wood (2014) A note on the asymptotic expansion of generalized hypergeometric functions. Anal. Appl. (Singap.) 12 (1), pp. 107–115.
  • H. Volkmer (2021) Fourier series representation of Ferrers function 𝖯 .
  • H. Volkmer (2023) Asymptotic expansion of the generalized hypergeometric function F q p ( z ) as z for p < q . Anal. Appl. (Singap.) 21 (2), pp. 535–545.
  • 30: 19.5 Maclaurin and Related Expansions
    §19.5 Maclaurin and Related Expansions
    where F 1 2 is the Gauss hypergeometric function (§§15.1 and 15.2(i)). … … Series expansions of F ( ϕ , k ) and E ( ϕ , k ) are surveyed and improved in Van de Vel (1969), and the case of F ( ϕ , k ) is summarized in Gautschi (1975, §1.3.2). …