About the Project

elliptic cases of R-a(b;z)

AdvancedHelp

(0.007 seconds)

21—30 of 885 matching pages

21: 22.17 Moduli Outside the Interval [0,1]
§22.17 Moduli Outside the Interval [0,1]
§22.17(i) Real or Purely Imaginary Moduli
§22.17(ii) Complex Moduli
When z is fixed each of the twelve Jacobian elliptic functions is a meromorphic function of k 2 . …For proofs of these results and further information see Walker (2003).
22: 22.13 Derivatives and Differential Equations
§22.13(i) Derivatives
§22.13(ii) First-Order Differential Equations
22.13.7 ( d d z dc ( z , k ) ) 2 = ( dc 2 ( z , k ) 1 ) ( dc 2 ( z , k ) k 2 ) ,
22.13.10 ( d d z ns ( z , k ) ) 2 = ( ns 2 ( z , k ) k 2 ) ( ns 2 ( z , k ) 1 ) ,
§22.13(iii) Second-Order Differential Equations
23: 22.1 Special Notation
x , y real variables.
K , K K ( k ) , K ( k ) = K ( k ) (complete elliptic integrals of the first kind (§19.2(ii))).
The functions treated in this chapter are the three principal Jacobian elliptic functions sn ( z , k ) , cn ( z , k ) , dn ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ( z , k ) , sd ( z , k ) , nd ( z , k ) , dc ( z , k ) , nc ( z , k ) , sc ( z , k ) , ns ( z , k ) , ds ( z , k ) , cs ( z , k ) ; the amplitude function am ( x , k ) ; Jacobi’s epsilon and zeta functions ( x , k ) and Z ( x | k ) . The notation sn ( z , k ) , cn ( z , k ) , dn ( z , k ) is due to Gudermann (1838), following Jacobi (1827); that for the subsidiary functions is due to Glaisher (1882). Other notations for sn ( z , k ) are sn ( z | m ) and sn ( z , m ) with m = k 2 ; see Abramowitz and Stegun (1964) and Walker (1996). …
24: 19.6 Special Cases
§19.6 Special Cases
§19.6(i) Complete Elliptic Integrals
Exact values of K ( k ) and E ( k ) for various special values of k are given in Byrd and Friedman (1971, 111.10 and 111.11) and Cooper et al. (2006).
§19.6(ii) F ( ϕ , k )
§19.6(iii) E ( ϕ , k )
25: 22.14 Integrals
§22.14(i) Indefinite Integrals of Jacobian Elliptic Functions
See §22.16(i) for am ( z , k ) . …
§22.14(ii) Indefinite Integrals of Powers of Jacobian Elliptic Functions
§22.14(iv) Definite Integrals
26: 22.10 Maclaurin Series
§22.10(i) Maclaurin Series in z
The full expansions converge when | z | < min ( K ( k ) , K ( k ) ) .
§22.10(ii) Maclaurin Series in k and k
The radius of convergence is the distance to the origin from the nearest pole in the complex k -plane in the case of (22.10.4)–(22.10.6), or complex k -plane in the case of (22.10.7)–(22.10.9); see §22.17.
27: 19.14 Reduction of General Elliptic Integrals
§19.14 Reduction of General Elliptic Integrals
There are four important special cases of (19.14.4)–(19.14.6), as follows. … (These four cases include 12 integrals in Abramowitz and Stegun (1964, p. 596).)
§19.14(ii) General Case
28: 22.7 Landen Transformations
§22.7(i) Descending Landen Transformation
22.7.3 cn ( z , k ) = cn ( z / ( 1 + k 1 ) , k 1 ) dn ( z / ( 1 + k 1 ) , k 1 ) 1 + k 1 sn 2 ( z / ( 1 + k 1 ) , k 1 ) ,
§22.7(ii) Ascending Landen Transformation
22.7.6 sn ( z , k ) = ( 1 + k 2 ) sn ( z / ( 1 + k 2 ) , k 2 ) cn ( z / ( 1 + k 2 ) , k 2 ) dn ( z / ( 1 + k 2 ) , k 2 ) ,
§22.7(iii) Generalized Landen Transformations
29: 22.3 Graphics
§22.3(i) Real Variables: Line Graphs
Line graphs of the functions sn ( x , k ) , cn ( x , k ) , dn ( x , k ) , cd ( x , k ) , sd ( x , k ) , nd ( x , k ) , dc ( x , k ) , nc ( x , k ) , sc ( x , k ) , ns ( x , k ) , ds ( x , k ) , and cs ( x , k ) for representative values of real x and real k illustrating the near trigonometric ( k = 0 ), and near hyperbolic ( k = 1 ) limits. … sn ( x , k ) , cn ( x , k ) , and dn ( x , k ) as functions of real arguments x and k . …
§22.3(iii) Complex z ; Real k
§22.3(iv) Complex k
30: 23.5 Special Lattices
§23.5(iii) Lemniscatic Lattice
§23.5(iv) Rhombic Lattice
As a function of e 3 the root e 1 is increasing. For the case ω 3 = e π i / 3 ω 1 see §23.5(v).
§23.5(v) Equianharmonic Lattice