About the Project

eigenvalues

AdvancedHelp

(0.001 seconds)

31—40 of 87 matching pages

31: 29.1 Special Notation
All derivatives are denoted by differentials, not by primes. The main functions treated in this chapter are the eigenvalues a ν 2 m ( k 2 ) , a ν 2 m + 1 ( k 2 ) , b ν 2 m + 1 ( k 2 ) , b ν 2 m + 2 ( k 2 ) , the Lamé functions 𝐸𝑐 ν 2 m ( z , k 2 ) , 𝐸𝑐 ν 2 m + 1 ( z , k 2 ) , 𝐸𝑠 ν 2 m + 1 ( z , k 2 ) , 𝐸𝑠 ν 2 m + 2 ( z , k 2 ) , and the Lamé polynomials 𝑢𝐸 2 n m ( z , k 2 ) , 𝑠𝐸 2 n + 1 m ( z , k 2 ) , 𝑐𝐸 2 n + 1 m ( z , k 2 ) , 𝑑𝐸 2 n + 1 m ( z , k 2 ) , 𝑠𝑐𝐸 2 n + 2 m ( z , k 2 ) , 𝑠𝑑𝐸 2 n + 2 m ( z , k 2 ) , 𝑐𝑑𝐸 2 n + 2 m ( z , k 2 ) , 𝑠𝑐𝑑𝐸 2 n + 3 m ( z , k 2 ) . The notation for the eigenvalues and functions is due to Erdélyi et al. (1955, §15.5.1) and that for the polynomials is due to Arscott (1964b, §9.3.2). … Other notations that have been used are as follows: Ince (1940a) interchanges a ν 2 m + 1 ( k 2 ) with b ν 2 m + 1 ( k 2 ) . …
( s ν m ( k 2 ) ) 2 = 4 π 0 K ( 𝐸𝑠 ν m ( x , k 2 ) ) 2 d x .
32: 30.9 Asymptotic Approximations and Expansions
§30.9 Asymptotic Approximations and Expansions
30.9.1 λ n m ( γ 2 ) γ 2 + γ q + β 0 + β 1 γ 1 + β 2 γ 2 + ,
The asymptotic behavior of λ n m ( γ 2 ) and a n , k m ( γ 2 ) as n in descending powers of 2 n + 1 is derived in Meixner (1944). …The behavior of λ n m ( γ 2 ) for complex γ 2 and large | λ n m ( γ 2 ) | is investigated in Hunter and Guerrieri (1982).
33: 30.7 Graphics
§30.7(i) Eigenvalues
See accompanying text
Figure 30.7.1: Eigenvalues λ n 0 ( γ 2 ) , n = 0 , 1 , 2 , 3 , 10 γ 2 10 . Magnify
See accompanying text
Figure 30.7.2: Eigenvalues λ n 1 ( γ 2 ) n = 1 , 2 , 3 , 4 , 10 γ 2 10 . Magnify
See accompanying text
Figure 30.7.3: Eigenvalues λ n 5 ( γ 2 ) , n = 5 , 6 , 7 , 8 , 40 γ 2 40 . Magnify
See accompanying text
Figure 30.7.4: Eigenvalues λ n 10 ( γ 2 ) , n = 10 , 11 , 12 , 13 , 50 γ 2 150 . Magnify
34: 28.4 Fourier Series
( a 4 m 2 ) A 2 m q ( A 2 m 2 + A 2 m + 2 ) = 0 , m = 2 , 3 , 4 , , a = a 2 n ( q ) , A 2 m = A 2 m 2 n ( q ) .
28.4.24 A 2 m 2 n ( q ) A 0 2 n ( q ) = ( 1 ) m ( m ! ) 2 ( q 4 ) m π ( 1 + O ( m 1 ) ) w II ( 1 2 π ; a 2 n ( q ) , q ) ,
28.4.25 A 2 m + 1 2 n + 1 ( q ) A 1 2 n + 1 ( q ) = ( 1 ) m + 1 ( ( 1 2 ) m + 1 ) 2 ( q 4 ) m + 1 2 ( 1 + O ( m 1 ) ) w II ( 1 2 π ; a 2 n + 1 ( q ) , q ) ,
28.4.26 B 2 m + 1 2 n + 1 ( q ) B 1 2 n + 1 ( q ) = ( 1 ) m ( ( 1 2 ) m + 1 ) 2 ( q 4 ) m + 1 2 ( 1 + O ( m 1 ) ) w I ( 1 2 π ; b 2 n + 1 ( q ) , q ) ,
28.4.27 B 2 m 2 n + 2 ( q ) B 2 2 n + 2 ( q ) = ( 1 ) m ( m ! ) 2 ( q 4 ) m q π ( 1 + O ( m 1 ) ) w I ( 1 2 π ; b 2 n + 2 ( q ) , q ) .
35: 28.29 Definitions and Basic Properties
iff e π i ν is an eigenvalue of the matrix …
§28.29(iii) Discriminant and Eigenvalues in the Real Case
To every equation (28.29.1), there belong two increasing infinite sequences of real eigenvalues:
28.29.16 λ n , n = 0 , 1 , 2 , ,  with  ( λ n ) = 2 ,
28.29.17 μ n , n = 1 , 2 , 3 , ,  with  ( μ n ) = 2 .
36: Hans Volkmer
His book Multiparameter Eigenvalue Problems and Expansion Theorems was published by Springer as Lecture Notes in Mathematics No. …
37: 3.7 Ordinary Differential Equations
§3.7(iv) Sturm–Liouville Eigenvalue Problems
The Sturm–Liouville eigenvalue problem is the construction of a nontrivial solution of the system …The values λ k are the eigenvalues and the corresponding solutions w k of the differential equation are the eigenfunctions. The eigenvalues λ k are simple, that is, there is only one corresponding eigenfunction (apart from a normalization factor), and when ordered increasingly the eigenvalues satisfy … The larger the absolute values of the eigenvalues λ k that are being sought, the smaller the integration steps | τ j | need to be. …
38: 28.8 Asymptotic Expansions for Large q
§28.8 Asymptotic Expansions for Large q
§28.8(i) Eigenvalues
28.8.1 a m ( h 2 ) b m + 1 ( h 2 ) } 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
28.8.2 b m + 1 ( h 2 ) a m ( h 2 ) = 2 4 m + 5 m ! ( 2 π ) 1 / 2 h m + ( 3 / 2 ) e 4 h ( 1 6 m 2 + 14 m + 7 32 h + O ( 1 h 2 ) ) .
39: 19.31 Probability Distributions
More generally, let 𝐀 ( = [ a r , s ] ) and 𝐁 ( = [ b r , s ] ) be real positive-definite matrices with n rows and n columns, and let λ 1 , , λ n be the eigenvalues of 𝐀 𝐁 1 . …
19.31.2 n ( 𝐱 T 𝐀 𝐱 ) μ exp ( 𝐱 T 𝐁 𝐱 ) d x 1 d x n = π n / 2 Γ ( μ + 1 2 n ) det 𝐁 Γ ( 1 2 n ) R μ ( 1 2 , , 1 2 ; λ 1 , , λ n ) , μ > 1 2 n .
40: 32.14 Combinatorics
The distribution function F ( s ) given by (32.14.2) arises in random matrix theory where it gives the limiting distribution for the normalized largest eigenvalue in the Gaussian Unitary Ensemble of n × n Hermitian matrices; see Tracy and Widom (1994). …