eigenvalues of accessory parameters
(0.002 seconds)
1—10 of 415 matching pages
1: 31.13 Asymptotic Approximations
§31.13 Asymptotic Approximations
►For asymptotic approximations for the accessory parameter eigenvalues , see Fedoryuk (1991) and Slavyanov (1996). …2: 31.4 Solutions Analytic at Two Singularities: Heun Functions
…
►For an infinite set of discrete values , , of the accessory parameter
, the function is analytic at , and hence also throughout the disk .
…
►
31.4.1
.
►The eigenvalues
satisfy the continued-fraction equation
►
31.4.2
…
►
31.4.3
,
…
3: 28.7 Analytic Continuation of Eigenvalues
§28.7 Analytic Continuation of Eigenvalues
►As functions of , and can be continued analytically in the complex -plane. The only singularities are algebraic branch points, with and finite at these points. …The normal values are simple roots of the corresponding equations (28.2.21) and (28.2.22). … ► …4: 28.13 Graphics
5: 28.6 Expansions for Small
…
►
§28.6(i) Eigenvalues
►Leading terms of the power series for and for are: … ►The coefficients of the power series of , and also , are the same until the terms in and , respectively. … ►Higher coefficients in the foregoing series can be found by equating coefficients in the following continued-fraction equations: … ►Here for , for , and for and . …6: 28.34 Methods of Computation
…
►
(d)
…
►
(f)
…
►Also, once the eigenvalues
, , and have been computed the following methods are applicable:
…
§28.34(ii) Eigenvalues
►Methods for computing the eigenvalues , , and , defined in §§28.2(v) and 28.12(i), include: … ►7: 29.3 Definitions and Basic Properties
…
►
§29.3(i) Eigenvalues
… ►§29.3(ii) Distribution
►The eigenvalues interlace according to …The eigenvalues coalesce according to … ►§29.3(vii) Power Series
…8: 28.15 Expansions for Small
…
►
§28.15(i) Eigenvalues
►
28.15.1
►Higher coefficients can be found by equating powers of in the following continued-fraction equation, with :
►
28.15.2
…
►
28.15.3
…
9: 29.4 Graphics
…
►