About the Project

double precision

AdvancedHelp

(0.002 seconds)

1—10 of 28 matching pages

1: Bibliography N
  • M. Nardin, W. F. Perger, and A. Bhalla (1992a) Algorithm 707: CONHYP: A numerical evaluator of the confluent hypergeometric function for complex arguments of large magnitudes. ACM Trans. Math. Software 18 (3), pp. 345–349.
  • NetNUMPAC (free Fortran library)
  • NMS (free collection of Fortran subroutines)
  • C. J. Noble and I. J. Thompson (1984) COULN, a program for evaluating negative energy Coulomb functions. Comput. Phys. Comm. 33 (4), pp. 413–419.
  • C. J. Noble (2004) Evaluation of negative energy Coulomb (Whittaker) functions. Comput. Phys. Comm. 159 (1), pp. 55–62.
  • 2: Bibliography Y
  • T. Yoshida (1995) Computation of Kummer functions U ( a , b , x ) for large argument x by using the τ -method. Trans. Inform. Process. Soc. Japan 36 (10), pp. 2335–2342 (Japanese).
  • 3: 3.1 Arithmetics and Error Measures
    IEEE Standard
    In the case of the normalized binary interchange formats, the representation of data for binary32 (previously single precision) ( N = 32 , p = 24 , E min = 126 , E max = 127 ), binary64 (previously double precision) ( N = 64 , p = 53 , E min = 1022 , E max = 1023 ) and binary128 (previously quad precision) ( N = 128 , p = 113 , E min = 16382 , E max = 16383 ) are as in Figure 3.1.1. …
    Figure 3.1.1: Floating-point arithmetic. Representation of data in the binary interchange formats for binary32, binary64 and binary128 (previously single, double and quad precision).
    4: Bibliography G
  • A. Gil and J. Segura (1997) Evaluation of Legendre functions of argument greater than one. Comput. Phys. Comm. 105 (2-3), pp. 273–283.
  • A. Gil and J. Segura (1998) A code to evaluate prolate and oblate spheroidal harmonics. Comput. Phys. Comm. 108 (2-3), pp. 267–278.
  • E. S. Ginsberg and D. Zaborowski (1975) Algorithm 490: The Dilogarithm function of a real argument [S22]. Comm. ACM 18 (4), pp. 200–202.
  • M. Goano (1995) Algorithm 745: Computation of the complete and incomplete Fermi-Dirac integral. ACM Trans. Math. Software 21 (3), pp. 221–232.
  • Z. Gong, L. Zejda, W. Dappen, and J. M. Aparicio (2001) Generalized Fermi-Dirac functions and derivatives: Properties and evaluation. Comput. Phys. Comm. 136 (3), pp. 294–309.
  • 5: Bibliography Z
  • M. R. Zaghloul (2016) Remark on “Algorithm 916: computing the Faddeyeva and Voigt functions”: efficiency improvements and Fortran translation. ACM Trans. Math. Softw. 42 (3), pp. 26:1–26:9.
  • S. Zhang and J. Jin (1996) Computation of Special Functions. John Wiley & Sons Inc., New York.
  • 6: 33.23 Methods of Computation
    Noble (2004) obtains double-precision accuracy for W η , μ ( 2 ρ ) for a wide range of parameters using a combination of recurrence techniques, power-series expansions, and numerical quadrature; compare (33.2.7). …
    7: Bibliography F
  • B. R. Fabijonas (2004) Algorithm 838: Airy functions. ACM Trans. Math. Software 30 (4), pp. 491–501.
  • FDLIBM (free C library)
  • FN (free Fortran library)
  • R. C. Forrey (1997) Computing the hypergeometric function. J. Comput. Phys. 137 (1), pp. 79–100.
  • P. A. Fox, A. D. Hall, and N. L. Schryer (1978) The PORT mathematical subroutine library. ACM Trans. Math. Software 4 (2), pp. 104–126.
  • 8: Bibliography T
  • G. Taubmann (1992) Parabolic cylinder functions U ( n , x ) for natural n and positive x . Comput. Phys. Commun. 69, pp. 415–419.
  • I. J. Thompson and A. R. Barnett (1985) COULCC: A continued-fraction algorithm for Coulomb functions of complex order with complex arguments. Comput. Phys. Comm. 36 (4), pp. 363–372.
  • I. J. Thompson and A. R. Barnett (1987) Modified Bessel functions I ν ( z ) and K ν ( z ) of real order and complex argument, to selected accuracy. Comput. Phys. Comm. 47 (2-3), pp. 245–257.
  • 9: Bibliography C
  • J. B. Campbell (1984) Determination of ν -zeros of Hankel functions. Comput. Phys. Comm. 32 (3), pp. 333–339.
  • J. A. Christley and I. J. Thompson (1994) CRCWFN: Coupled real Coulomb wavefunctions. Comput. Phys. Comm. 79 (1), pp. 143–155.
  • D. S. Clemm (1969) Algorithm 352: Characteristic values and associated solutions of Mathieu’s differential equation. Comm. ACM 12 (7), pp. 399–407.
  • L. D. Cloutman (1989) Numerical evaluation of the Fermi-Dirac integrals. The Astrophysical Journal Supplement Series 71, pp. 677–699.
  • W. J. Cody (1983) Algorithm 597: Sequence of modified Bessel functions of the first kind. ACM Trans. Math. Software 9 (2), pp. 242–245.
  • 10: Bibliography B
  • A. Bañuelos, R. A. Depine, and R. C. Mancini (1981) A program for computing the Fermi-Dirac functions. Comput. Phys. Comm. 21 (3), pp. 315–322.
  • A. Bañuelos and R. A. Depine (1980) A program for computing the Riemann zeta function for complex argument. Comput. Phys. Comm. 20 (3), pp. 441–445.
  • A. R. Barnett (1981b) KLEIN: Coulomb functions for real λ and positive energy to high accuracy. Comput. Phys. Comm. 24 (2), pp. 141–159.
  • A. R. Barnett (1982) COULFG: Coulomb and Bessel functions and their derivatives, for real arguments, by Steed’s method. Comput. Phys. Comm. 27, pp. 147–166.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.