About the Project

differences

AdvancedHelp

(0.001 seconds)

31—40 of 176 matching pages

31: Bibliography Y
  • A. J. Yee (2004) Partitions with difference conditions and Alder’s conjecture. Proc. Natl. Acad. Sci. USA 101 (47), pp. 16417–16418.
  • 32: 7.10 Derivatives
    33: 16.24 Physical Applications
    The coefficients of transformations between different coupling schemes of three angular momenta are related to the Wigner 6 j symbols. …
    34: 28.20 Definitions and Basic Properties
    28.20.1 w ′′ ( a 2 q cosh ( 2 z ) ) w = 0 ,
    28.20.3 Ce ν ( z , q ) = ce ν ( ± i z , q ) , ν 1 , 2 , ,
    28.20.5 Me ν ( z , q ) = me ν ( i z , q ) ,
    28.20.6 Fe n ( z , q ) = i fe n ( ± i z , q ) , n = 0 , 1 , ,
    28.20.7 Ge n ( z , q ) = ge n ( ± i z , q ) , n = 1 , 2 , .
    35: 29.20 Methods of Computation
    These matrices are the same as those provided in §29.15(i) for the computation of Lamé polynomials with the difference that n has to be chosen sufficiently large. …
    36: 34.8 Approximations for Large Parameters
    For large values of the parameters in the 3 j , 6 j , and 9 j symbols, different asymptotic forms are obtained depending on which parameters are large. …
    37: Bibliography W
  • Z. Wang and R. Wong (2002) Uniform asymptotic expansion of J ν ( ν a ) via a difference equation. Numer. Math. 91 (1), pp. 147–193.
  • Z. Wang and R. Wong (2003) Asymptotic expansions for second-order linear difference equations with a turning point. Numer. Math. 94 (1), pp. 147–194.
  • Z. Wang and R. Wong (2005) Linear difference equations with transition points. Math. Comp. 74 (250), pp. 629–653.
  • R. Wong and H. Li (1992a) Asymptotic expansions for second-order linear difference equations. II. Stud. Appl. Math. 87 (4), pp. 289–324.
  • R. Wong and H. Li (1992b) Asymptotic expansions for second-order linear difference equations. J. Comput. Appl. Math. 41 (1-2), pp. 65–94.
  • 38: 33.23 Methods of Computation
    Bardin et al. (1972) describes ten different methods for the calculation of F and G , valid in different regions of the ( η , ρ )-plane. …
    39: 26.8 Set Partitions: Stirling Numbers
    26.8.7 k = 0 n s ( n , k ) x k = ( x n + 1 ) n ,
    26.8.31 1 k ! d k d x k f ( x ) = n = k s ( n , k ) n ! Δ n f ( x ) ,
    26.8.32 Δ f ( x ) = f ( x + 1 ) f ( x ) ;
    26.8.37 1 k ! Δ k f ( x ) = n = k S ( n , k ) n ! d n d x n f ( x ) ,
    40: 7.12 Asymptotic Expansions
    7.12.4 f ( z ) = 1 π z m = 0 n 1 ( 1 ) m ( 1 2 ) 2 m ( π z 2 / 2 ) 2 m + R n ( f ) ( z ) ,
    7.12.5 g ( z ) = 1 π z m = 0 n 1 ( 1 ) m ( 1 2 ) 2 m + 1 ( π z 2 / 2 ) 2 m + 1 , + R n ( g ) ( z ) ,
    7.12.6 R n ( f ) ( z ) = ( 1 ) n π 2 0 e π z 2 t / 2 t 2 n ( 1 / 2 ) t 2 + 1 d t ,
    7.12.7 R n ( g ) ( z ) = ( 1 ) n π 2 0 e π z 2 t / 2 t 2 n + ( 1 / 2 ) t 2 + 1 d t .