About the Project

cosine function

AdvancedHelp

(0.007 seconds)

21—30 of 282 matching pages

21: 14.19 Toroidal (or Ring) Functions
14.19.4 P n 1 2 m ( cosh ξ ) = Γ ( n + m + 1 2 ) ( sinh ξ ) m 2 m π 1 / 2 Γ ( n m + 1 2 ) Γ ( m + 1 2 ) 0 π ( sin ϕ ) 2 m ( cosh ξ + cos ϕ sinh ξ ) n + m + ( 1 / 2 ) d ϕ ,
14.19.5 𝑸 n 1 2 m ( cosh ξ ) = Γ ( n + 1 2 ) Γ ( n + m + 1 2 ) Γ ( n m + 1 2 ) 0 cosh ( m t ) ( cosh ξ + cosh t sinh ξ ) n + ( 1 / 2 ) d t , m < n + 1 2 .
14.19.6 𝑸 1 2 μ ( cosh ξ ) + 2 n = 1 Γ ( μ + n + 1 2 ) Γ ( μ + 1 2 ) 𝑸 n 1 2 μ ( cosh ξ ) cos ( n ϕ ) = ( 1 2 π ) 1 / 2 ( sinh ξ ) μ ( cosh ξ cos ϕ ) μ + ( 1 / 2 ) , μ > 1 2 .
22: 24.7 Integral Representations
24.7.7 B 2 n ( x ) = ( 1 ) n + 1 2 n 0 cos ( 2 π x ) e 2 π t cosh ( 2 π t ) cos ( 2 π x ) t 2 n 1 d t , n = 1 , 2 , ,
24.7.8 B 2 n + 1 ( x ) = ( 1 ) n + 1 ( 2 n + 1 ) 0 sin ( 2 π x ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n d t .
24.7.9 E 2 n ( x ) = ( 1 ) n 4 0 sin ( π x ) cosh ( π t ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n d t ,
24.7.10 E 2 n + 1 ( x ) = ( 1 ) n + 1 4 0 cos ( π x ) sinh ( π t ) cosh ( 2 π t ) cos ( 2 π x ) t 2 n + 1 d t .
23: 4.17 Special Values and Limits
4.17.3 lim z 0 1 cos z z 2 = 1 2 .
24: 28.11 Expansions in Series of Mathieu Functions
28.11.4 cos 2 m z = n = 0 A 2 m 2 n ( q ) ce 2 n ( z , q ) , m 0 ,
28.11.5 cos ( 2 m + 1 ) z = n = 0 A 2 m + 1 2 n + 1 ( q ) ce 2 n + 1 ( z , q ) ,
25: 4.34 Derivatives and Differential Equations
4.34.1 d d z sinh z = cosh z ,
4.34.2 d d z cosh z = sinh z ,
4.34.13 w = ( 1 / a ) cosh ( a z + c ) ,
26: 28.23 Expansions in Series of Bessel Functions
28.23.2 me ν ( 0 , h 2 ) M ν ( j ) ( z , h ) = n = ( 1 ) n c 2 n ν ( h 2 ) 𝒞 ν + 2 n ( j ) ( 2 h cosh z ) ,
28.23.3 me ν ( 0 , h 2 ) M ν ( j ) ( z , h ) = i tanh z n = ( 1 ) n ( ν + 2 n ) c 2 n ν ( h 2 ) 𝒞 ν + 2 n ( j ) ( 2 h cosh z ) ,
28.23.6 Mc 2 m ( j ) ( z , h ) = ( 1 ) m ( ce 2 m ( 0 , h 2 ) ) 1 = 0 ( 1 ) A 2 2 m ( h 2 ) 𝒞 2 ( j ) ( 2 h cosh z ) ,
28.23.8 Mc 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( ce 2 m + 1 ( 0 , h 2 ) ) 1 = 0 ( 1 ) A 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h cosh z ) ,
28.23.10 Ms 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( se 2 m + 1 ( 0 , h 2 ) ) 1 tanh z = 0 ( 1 ) ( 2 + 1 ) B 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h cosh z ) ,
27: 17.3 q -Elementary and q -Special Functions
q -Cosine Functions
17.3.5 cos q ( x ) = 1 2 ( e q ( i x ) + e q ( i x ) ) = n = 0 ( 1 q ) 2 n ( 1 ) n x 2 n ( q ; q ) 2 n ,
17.3.6 Cos q ( x ) = 1 2 ( E q ( i x ) + E q ( i x ) ) = n = 0 ( 1 q ) 2 n q n ( 2 n 1 ) ( 1 ) n x 2 n ( q ; q ) 2 n .
28: 6.7 Integral Representations
6.7.10 Ein ( z ) Cin ( z ) = 0 π / 2 e z cos t sin ( z sin t ) d t ,
6.7.11 0 1 ( 1 e a t ) cos ( b t ) t d t = Ein ( a + i b ) Cin ( b ) , a , b .
§6.7(iii) Auxiliary Functions
6.7.15 f ( z ) = 2 0 K 0 ( 2 z t ) cos t d t ,
6.7.16 g ( z ) = 2 0 K 0 ( 2 z t ) sin t d t .
29: 14.5 Special Values
14.5.11 𝖯 ν 1 / 2 ( cos θ ) = ( 2 π sin θ ) 1 / 2 cos ( ( ν + 1 2 ) θ ) ,
14.5.14 𝖰 ν 1 / 2 ( cos θ ) = ( π 2 sin θ ) 1 / 2 cos ( ( ν + 1 2 ) θ ) ν + 1 2 .
14.5.17 𝑸 ν ± 1 / 2 ( cosh ξ ) = ( π 2 sinh ξ ) 1 / 2 exp ( ( ν + 1 2 ) ξ ) Γ ( ν + 3 2 ) .
14.5.18 𝖯 ν ν ( cos θ ) = ( sin θ ) ν 2 ν Γ ( ν + 1 ) ,
14.5.23 𝖰 1 2 ( cos θ ) = K ( cos ( 1 2 θ ) ) .
30: 28.10 Integral Equations
28.10.1 2 π 0 π / 2 cos ( 2 h cos z cos t ) ce 2 n ( t , h 2 ) d t = A 0 2 n ( h 2 ) ce 2 n ( 1 2 π , h 2 ) ce 2 n ( z , h 2 ) ,
28.10.2 2 π 0 π / 2 cosh ( 2 h sin z sin t ) ce 2 n ( t , h 2 ) d t = A 0 2 n ( h 2 ) ce 2 n ( 0 , h 2 ) ce 2 n ( z , h 2 ) ,
28.10.3 2 π 0 π / 2 sin ( 2 h cos z cos t ) ce 2 n + 1 ( t , h 2 ) d t = h A 1 2 n + 1 ( h 2 ) ce 2 n + 1 ( 1 2 π , h 2 ) ce 2 n + 1 ( z , h 2 ) ,
28.10.4 2 π 0 π / 2 cos z cos t cosh ( 2 h sin z sin t ) ce 2 n + 1 ( t , h 2 ) d t = A 1 2 n + 1 ( h 2 ) 2 ce 2 n + 1 ( 0 , h 2 ) ce 2 n + 1 ( z , h 2 ) ,