About the Project

cosine function

AdvancedHelp

(0.013 seconds)

11—20 of 282 matching pages

11: 4.31 Special Values and Limits
4.31.3 lim z 0 cosh z 1 z 2 = 1 2 .
12: 20.5 Infinite Products and Related Results
20.5.1 θ 1 ( z , q ) = 2 q 1 / 4 sin z n = 1 ( 1 q 2 n ) ( 1 2 q 2 n cos ( 2 z ) + q 4 n ) ,
20.5.2 θ 2 ( z , q ) = 2 q 1 / 4 cos z n = 1 ( 1 q 2 n ) ( 1 + 2 q 2 n cos ( 2 z ) + q 4 n ) ,
20.5.3 θ 3 ( z , q ) = n = 1 ( 1 q 2 n ) ( 1 + 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 ) ,
20.5.4 θ 4 ( z , q ) = n = 1 ( 1 q 2 n ) ( 1 2 q 2 n 1 cos ( 2 z ) + q 4 n 2 ) .
20.5.10 θ 1 ( z , q ) θ 1 ( z , q ) cot z = 4 sin ( 2 z ) n = 1 q 2 n 1 2 q 2 n cos ( 2 z ) + q 4 n = 4 n = 1 q 2 n 1 q 2 n sin ( 2 n z ) ,
13: 28.32 Mathematical Applications
28.32.3 2 V ξ 2 + 2 V η 2 + 1 2 c 2 k 2 ( cosh ( 2 ξ ) cos ( 2 η ) ) V = 0 .
28.32.4 2 K z 2 2 K ζ 2 = 2 q ( cos ( 2 z ) cos ( 2 ζ ) ) K .
14: 6.2 Definitions and Interrelations
This is also true of the functions Ci ( z ) and Chi ( z ) defined in §6.2(ii). …
§6.2(iii) Auxiliary Functions
6.2.17 f ( z ) = Ci ( z ) sin z si ( z ) cos z ,
15: 19.10 Relations to Other Functions
16: 4.37 Inverse Hyperbolic Functions
4.37.5 Arcsech z = Arccosh ( 1 / z ) ,
Each is two-valued on the corresponding cut(s), and each is real on the part of the real axis that remains after deleting the intersections with the corresponding cuts. …
4.37.8 arcsech z = arccosh ( 1 / z ) .
4.37.27 z = cosh w ,
17: 4.16 Elementary Properties
§4.16 Elementary Properties
Table 4.16.1: Signs of the trigonometric functions in the four quadrants.
Quadrant sin θ , csc θ cos θ , sec θ tan θ , cot θ
Table 4.16.2: Trigonometric functions: quarter periods and change of sign.
x θ 1 2 π ± θ π ± θ 3 2 π ± θ 2 π ± θ
Table 4.16.3: Trigonometric functions: interrelations. …
sin θ = a cos θ = a tan θ = a csc θ = a sec θ = a cot θ = a
18: 10.12 Generating Function and Associated Series
§10.12 Generating Function and Associated Series
cos ( z sin θ ) = J 0 ( z ) + 2 k = 1 J 2 k ( z ) cos ( 2 k θ ) ,
cos ( z cos θ ) = J 0 ( z ) + 2 k = 1 ( 1 ) k J 2 k ( z ) cos ( 2 k θ ) ,
sin ( z cos θ ) = 2 k = 0 ( 1 ) k J 2 k + 1 ( z ) cos ( ( 2 k + 1 ) θ ) .
cos z = J 0 ( z ) 2 J 2 ( z ) + 2 J 4 ( z ) 2 J 6 ( z ) + ,
19: 34.8 Approximations for Large Parameters
34.8.1 { j 1 j 2 j 3 j 2 j 1 l 3 } = ( 1 ) j 1 + j 2 + j 3 + l 3 ( 4 π ( 2 j 1 + 1 ) ( 2 j 2 + 1 ) ( 2 l 3 + 1 ) sin θ ) 1 2 ( cos ( ( l 3 + 1 2 ) θ 1 4 π ) + o ( 1 ) ) , j 1 , j 2 , j 3 l 3 1 ,
34.8.2 cos θ = j 1 ( j 1 + 1 ) + j 2 ( j 2 + 1 ) j 3 ( j 3 + 1 ) 2 j 1 ( j 1 + 1 ) j 2 ( j 2 + 1 ) ,
20: 4.20 Derivatives and Differential Equations
4.20.1 d d z sin z = cos z ,
4.20.2 d d z cos z = sin z ,
4.20.8 d n d z n cos z = cos ( z + 1 2 n π ) .
4.20.12 w = A cos ( a z ) + B sin ( a z ) ,