About the Project

constants

AdvancedHelp

(0.001 seconds)

21—30 of 435 matching pages

21: 16.13 Appell Functions
16.13.1 F 1 ( α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
16.13.2 F 2 ( α ; β , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m ( β ) n ( γ ) m ( γ ) n m ! n ! x m y n , | x | + | y | < 1 ,
16.13.3 F 3 ( α , α ; β , β ; γ ; x , y ) = m , n = 0 ( α ) m ( α ) n ( β ) m ( β ) n ( γ ) m + n m ! n ! x m y n , max ( | x | , | y | ) < 1 ,
16.13.4 F 4 ( α , β ; γ , γ ; x , y ) = m , n = 0 ( α ) m + n ( β ) m + n ( γ ) m ( γ ) n m ! n ! x m y n , | x | + | y | < 1 .
Here and elsewhere it is assumed that neither of the bottom parameters γ and γ is a nonpositive integer. …
22: 5.6 Inequalities
5.6.2 1 Γ ( x ) + 1 Γ ( 1 / x ) 2 ,
5.6.3 1 ( Γ ( x ) ) 2 + 1 ( Γ ( 1 / x ) ) 2 2 ,
5.6.4 x 1 s < Γ ( x + 1 ) Γ ( x + s ) < ( x + 1 ) 1 s , 0 < s < 1 .
5.6.6 | Γ ( x + i y ) | | Γ ( x ) | ,
5.6.8 | Γ ( z + a ) Γ ( z + b ) | 1 | z | b a .
23: 5.1 Special Notation
j , m , n nonnegative integers.
δ arbitrary small positive constant.
γ Euler’s constant5.2(ii)).
The main functions treated in this chapter are the gamma function Γ ( z ) , the psi function (or digamma function) ψ ( z ) , the beta function B ( a , b ) , and the q -gamma function Γ q ( z ) . The notation Γ ( z ) is due to Legendre. Alternative notations for this function are: Π ( z 1 ) (Gauss) and ( z 1 ) ! . …
24: 8.3 Graphics
See accompanying text
Figure 8.3.1: Γ ( a , x ) , a = 0. … Magnify
See accompanying text
Figure 8.3.2: γ ( a , x ) , a = 0. … Magnify
See accompanying text
Figure 8.3.3: γ ( a , x ) , a = 1, 2, 2. … Magnify
Some monotonicity properties of γ ( a , x ) and Γ ( a , x ) in the four quadrants of the ( a , x )-plane in Figure 8.3.6 are given in Erdélyi et al. (1953b, §9.6). …
See accompanying text
Figure 8.3.8: Γ ( 0.25 , x + i y ) , 3 x 3 , 3 y 3 . …When x = y = 0 , Γ ( 0.25 , 0 ) = Γ ( 0.25 ) = 3.625 . Magnify 3D Help
25: 16.1 Special Notation
p , q nonnegative integers.
δ arbitrary small positive constant.
The main functions treated in this chapter are the generalized hypergeometric function F q p ( a 1 , , a p b 1 , , b q ; z ) , the Appell (two-variable hypergeometric) functions F 1 ( α ; β , β ; γ ; x , y ) , F 2 ( α ; β , β ; γ , γ ; x , y ) , F 3 ( α , α ; β , β ; γ ; x , y ) , F 4 ( α , β ; γ , γ ; x , y ) , and the Meijer G -function G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) . Alternative notations are F q p ( 𝐚 𝐛 ; z ) , F q p ( a 1 , , a p ; b 1 , , b q ; z ) , and F q p ( 𝐚 ; 𝐛 ; z ) for the generalized hypergeometric function, F 1 ( α , β , β ; γ ; x , y ) , F 2 ( α , β , β ; γ , γ ; x , y ) , F 3 ( α , α , β , β ; γ ; x , y ) , F 4 ( α , β ; γ , γ ; x , y ) , for the Appell functions, and G p , q m , n ( z ; 𝐚 ; 𝐛 ) for the Meijer G -function.
26: 18.25 Wilson Class: Definitions
Table 18.25.1 lists the transformations of variable, orthogonality ranges, and parameter constraints that are needed in §18.2(i) for the Wilson polynomials W n ( x ; a , b , c , d ) , continuous dual Hahn polynomials S n ( x ; a , b , c ) , Racah polynomials R n ( x ; α , β , γ , δ ) , and dual Hahn polynomials R n ( x ; γ , δ , N ) . …
γ , δ > 1 , β > N + γ .
γ , δ > 1 , β < N δ .
γ , δ < N , β < γ + 1 .
The first four sets imply γ + δ > 2 , and the last four imply γ + δ < 2 N . …
27: 8.14 Integrals
8.14.1 0 e a x γ ( b , x ) Γ ( b ) d x = ( 1 + a ) b a , a > 0 , b > 1 ,
8.14.2 0 e a x Γ ( b , x ) d x = Γ ( b ) 1 ( 1 + a ) b a , a > 1 , b > 1 .
8.14.3 0 x a 1 γ ( b , x ) d x = Γ ( a + b ) a , a < 0 , ( a + b ) > 0 ,
8.14.4 0 x a 1 Γ ( b , x ) d x = Γ ( a + b ) a , a > 0 , ( a + b ) > 0 ,
8.14.5 0 x a 1 e s x γ ( b , x ) d x = Γ ( a + b ) b ( 1 + s ) a + b F ( 1 , a + b ; 1 + b ; 1 / ( 1 + s ) ) , s > 0 , ( a + b ) > 0 ,
28: 30.16 Methods of Computation
For m = 2 , n = 4 , γ 2 = 10 , … If | γ 2 | is large, then we can use the asymptotic expansions referred to in §30.9 to approximate 𝖯𝗌 n m ( x , γ 2 ) . … If λ n m ( γ 2 ) is known, then 𝖯𝗌 n m ( x , γ 2 ) can be found by summing (30.8.1). The coefficients a n , r m ( γ 2 ) are computed as the recessive solution of (30.8.4) (§3.6), and normalized via (30.8.5). … The coefficients a n , k m ( γ 2 ) calculated in §30.16(ii) can be used to compute S n m ( j ) ( z , γ ) , j = 1 , 2 , 3 , 4 from (30.11.3) as well as the connection coefficients K n m ( γ ) from (30.11.10) and (30.11.11). …
29: 4.34 Derivatives and Differential Equations
4.34.12 w = ( 1 / a ) sinh ( a z + c ) ,
4.34.13 w = ( 1 / a ) cosh ( a z + c ) ,
4.34.14 w = ( 1 / a ) coth ( a z + c ) ,
where A , B , c are arbitrary constants. …
30: 8.13 Zeros
§8.13(i) x -Zeros of γ ( a , x )
The function γ ( a , x ) has no real zeros for a 0 . …
§8.13(ii) λ -Zeros of γ ( a , λ a ) and Γ ( a , λ a )
For information on the distribution and computation of zeros of γ ( a , λ a ) and Γ ( a , λ a ) in the complex λ -plane for large values of the positive real parameter a see Temme (1995a).
§8.13(iii) a -Zeros of γ ( a , x )