About the Project

conjugate%20Poisson%20integral

AdvancedHelp

(0.002 seconds)

21—30 of 508 matching pages

21: 14.30 Spherical and Spheroidal Harmonics
14.30.6 Y l , m ( θ , ϕ ) = ( 1 ) m Y l , m ( θ , ϕ ) ¯ .
14.30.8 0 2 π 0 π Y l 1 , m 1 ( θ , ϕ ) ¯ Y l 2 , m 2 ( θ , ϕ ) sin θ d θ d ϕ = δ l 1 , l 2 δ m 1 , m 2 .
See also (34.3.22), and for further related integrals see Askey et al. (1986). …
14.30.9 𝖯 l ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ( ϕ 1 ϕ 2 ) ) = 4 π 2 l + 1 m = l l Y l , m ( θ 1 , ϕ 1 ) ¯ Y l , m ( θ 2 , ϕ 2 ) .
22: 6.19 Tables
§6.19(ii) Real Variables
  • Abramowitz and Stegun (1964, Chapter 5) includes x 1 Si ( x ) , x 2 Cin ( x ) , x 1 Ein ( x ) , x 1 Ein ( x ) , x = 0 ( .01 ) 0.5 ; Si ( x ) , Ci ( x ) , Ei ( x ) , E 1 ( x ) , x = 0.5 ( .01 ) 2 ; Si ( x ) , Ci ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x = 2 ( .1 ) 10 ; x f ( x ) , x 2 g ( x ) , x e x Ei ( x ) , x e x E 1 ( x ) , x 1 = 0 ( .005 ) 0.1 ; Si ( π x ) , Cin ( π x ) , x = 0 ( .1 ) 10 . Accuracy varies but is within the range 8S–11S.

  • Zhang and Jin (1996, pp. 652, 689) includes Si ( x ) , Ci ( x ) , x = 0 ( .5 ) 20 ( 2 ) 30 , 8D; Ei ( x ) , E 1 ( x ) , x = [ 0 , 100 ] , 8S.

  • Abramowitz and Stegun (1964, Chapter 5) includes the real and imaginary parts of z e z E 1 ( z ) , x = 19 ( 1 ) 20 , y = 0 ( 1 ) 20 , 6D; e z E 1 ( z ) , x = 4 ( .5 ) 2 , y = 0 ( .2 ) 1 , 6D; E 1 ( z ) + ln z , x = 2 ( .5 ) 2.5 , y = 0 ( .2 ) 1 , 6D.

  • Zhang and Jin (1996, pp. 690–692) includes the real and imaginary parts of E 1 ( z ) , ± x = 0.5 , 1 , 3 , 5 , 10 , 15 , 20 , 50 , 100 , y = 0 ( .5 ) 1 ( 1 ) 5 ( 5 ) 30 , 50 , 100 , 8S.

  • 23: 8 Incomplete Gamma and Related
    Functions
    24: 28 Mathieu Functions and Hill’s Equation
    25: Software Index
    26: 1.9 Calculus of a Complex Variable
    Complex Conjugate
    1.9.11 z ¯ = x i y ,
    If f ( z ( t 0 ) ) = , a t 0 b , then the integral is defined analogously to the infinite integrals in §1.4(v). …
    Cauchy’s Integral Formula
    Poisson Integral
    27: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    A complex linear vector space V is called an inner product space if an inner product u , v is defined for all u , v V with the properties: (i) u , v is complex linear in u ; (ii) u , v = v , u ¯ ; (iii) v , v 0 ; (iv) if v , v = 0 then v = 0 . … where the integral kernel is given by … Should an eigenvalue correspond to more than a single linearly independent eigenfunction, namely a multiplicity greater than one, all such eigenfunctions will always be implied as being part of any sums or integrals over the spectrum. … Also, because q is real-valued, f N z iff f ¯ N z ¯ . … Integral transforms (10.22.78) and (10.22.79) are examples of the utility of these extensions. …
    28: 23 Weierstrass Elliptic and Modular
    Functions
    29: 12.11 Zeros
    When a > 1 2 , U ( a , z ) has a string of complex zeros that approaches the ray ph z = 3 4 π as z , and a conjugate string. When a > 1 2 the zeros are asymptotically given by z a , s and z a , s ¯ , where s is a large positive integer and …
    12.11.9 u a , 1 2 1 2 μ ( 1 1.85575 708 μ 4 / 3 0.34438 34 μ 8 / 3 0.16871 5 μ 4 0.11414 μ 16 / 3 0.0808 μ 20 / 3 ) ,
    30: 3.8 Nonlinear Equations
    Let z 2 s z t be an approximation to the real quadratic factor of p ( z ) that corresponds to a pair of conjugate complex zeros or to a pair of real zeros. …
    3.8.15 p ( x ) = ( x 1 ) ( x 2 ) ( x 20 )
    Consider x = 20 and j = 19 . We have p ( 20 ) = 19 ! and a 19 = 1 + 2 + + 20 = 210 . …
    3.8.16 d x d a 19 = 20 19 19 ! = ( 4.30 ) × 10 7 .