About the Project

conjugate%20Poisson%20integral

AdvancedHelp

(0.003 seconds)

11—20 of 508 matching pages

11: 10.75 Tables
  • Achenbach (1986) tabulates J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) , x = 0 ( .1 ) 8 , 20D or 18–20S.

  • Zhang and Jin (1996, p. 270) tabulates 0 x J 0 ( t ) d t , 0 x t 1 ( 1 J 0 ( t ) ) d t , 0 x Y 0 ( t ) d t , x t 1 Y 0 ( t ) d t , x = 0 ( .1 ) 1 ( .5 ) 20 , 8D.

  • Bickley et al. (1952) tabulates x n I n ( x ) or e x I n ( x ) , x n K n ( x ) or e x K n ( x ) , n = 2 ( 1 ) 20 , x = 0 (.01 or .1) 10(.1) 20, 8S; I n ( x ) , K n ( x ) , n = 0 ( 1 ) 20 , x = 0 or 0.1 ( .1 ) 20 , 10S.

  • Kerimov and Skorokhodov (1984b) tabulates all zeros of the principal values of K n ( z ) and K n ( z ) , for n = 2 ( 1 ) 20 , 9S.

  • Zhang and Jin (1996, p. 322) tabulates ber x , ber x , bei x , bei x , ker x , ker x , kei x , kei x , x = 0 ( 1 ) 20 , 7S.

  • 12: 1.15 Summability Methods
    Poisson Kernel
    is the Poisson integral of f ( t ) . … is the conjugate Poisson integral of f ( x ) . … …
    13: 1.8 Fourier Series
    1.8.6_1 1 π π π f ( x ) g ( x ) ¯ d x = 1 2 a 0 a 0 ¯ + n = 1 ( a n a n ¯ + b n b n ¯ ) ,
    1.8.6_2 1 2 π π π f ( x ) g ( x ) ¯ d x = n = c n c n ¯ .
    (1.8.10) continues to apply if either a or b or both are infinite and/or f ( x ) has finitely many singularities in ( a , b ) , provided that the integral converges uniformly (§1.5(iv)) at a , b , and the singularities for all sufficiently large λ . …
    §1.8(iv) Poisson’s Summation Formula
    It follows from definition (1.14.1) that the integral in (1.8.14) is equal to 2 π ( f ) ( 2 π n ) . …
    14: 18.33 Polynomials Orthogonal on the Unit Circle
    where the bar signifies complex conjugate. … where the bar again signifies complex conjugate. … where the bar signifies complex conjugate and κ n > 0 , κ 0 = 1 . … for n > 0 , while Φ 1 ( z ) = z α 0 ¯ . …
    15: 26.9 Integer Partitions: Restricted Number and Part Size
    Table 26.9.1: Partitions p k ( n ) .
    n k
    8 0 1 5 10 15 18 20 21 22 22 22
    Figure 26.9.1: Ferrers graph of the partition 7 + 4 + 3 + 3 + 2 + 1 .
    The conjugate partition is obtained by reflecting the Ferrers graph across the main diagonal or, equivalently, by representing each integer by a column of dots. The conjugate to the example in Figure 26.9.1 is 6 + 5 + 4 + 2 + 1 + 1 + 1 . Conjugation establishes a one-to-one correspondence between partitions of n into at most k parts and partitions of n into parts with largest part less than or equal to k . …
    16: 8.26 Tables
  • Khamis (1965) tabulates P ( a , x ) for a = 0.05 ( .05 ) 10 ( .1 ) 20 ( .25 ) 70 , 0.0001 x 250 to 10D.

  • §8.26(iv) Generalized Exponential Integral
  • Abramowitz and Stegun (1964, pp. 245–248) tabulates E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x = 0 ( .01 ) 2 to 7D; also ( x + n ) e x E n ( x ) for n = 2 , 3 , 4 , 10 , 20 , x 1 = 0 ( .01 ) 0.1 ( .05 ) 0.5 to 6S.

  • Pagurova (1961) tabulates E n ( x ) for n = 0 ( 1 ) 20 , x = 0 ( .01 ) 2 ( .1 ) 10 to 4-9S; e x E n ( x ) for n = 2 ( 1 ) 10 , x = 10 ( .1 ) 20 to 7D; e x E p ( x ) for p = 0 ( .1 ) 1 , x = 0.01 ( .01 ) 7 ( .05 ) 12 ( .1 ) 20 to 7S or 7D.

  • Zhang and Jin (1996, Table 19.1) tabulates E n ( x ) for n = 1 , 2 , 3 , 5 , 10 , 15 , 20 , x = 0 ( .1 ) 1 , 1.5 , 2 , 3 , 5 , 10 , 20 , 30 , 50 , 100 to 7D or 8S.

  • 17: 36.8 Convergent Series Expansions
    §36.8 Convergent Series Expansions
    For multinomial power series for Ψ K ( 𝐱 ) , see Connor and Curtis (1982).
    36.8.3 3 2 / 3 4 π 2 Ψ ( H ) ( 3 1 / 3 𝐱 ) = Ai ( x ) Ai ( y ) n = 0 ( 3 1 / 3 i z ) n c n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n c n ( x ) d n ( y ) n ! + Ai ( x ) Ai ( y ) n = 2 ( 3 1 / 3 i z ) n d n ( x ) c n ( y ) n ! + Ai ( x ) Ai ( y ) n = 1 ( 3 1 / 3 i z ) n d n ( x ) d n ( y ) n ! ,
    36.8.4 Ψ ( E ) ( 𝐱 ) = 2 π 2 ( 2 3 ) 2 / 3 n = 0 ( i ( 2 / 3 ) 2 / 3 z ) n n ! ( f n ( x + i y 12 1 / 3 , x i y 12 1 / 3 ) ) ,
    36.8.5 f n ( ζ , ζ ¯ ) = c n ( ζ ) c n ( ζ ¯ ) Ai ( ζ ) Bi ( ζ ¯ ) + c n ( ζ ) d n ( ζ ¯ ) Ai ( ζ ) Bi ( ζ ¯ ) + d n ( ζ ) c n ( ζ ¯ ) Ai ( ζ ) Bi ( ζ ¯ ) + d n ( ζ ) d n ( ζ ¯ ) Ai ( ζ ) Bi ( ζ ¯ ) ,
    18: 36 Integrals with Coalescing Saddles
    Chapter 36 Integrals with Coalescing Saddles
    19: 12.10 Uniform Asymptotic Expansions for Large Parameter
    Here bars do not denote complex conjugates; instead
    12.10.26 ξ ¯ = 1 2 t t 2 + 1 + 1 2 ln ( t + t 2 + 1 ) ,
    12.10.27 u ¯ s ( t ) = i s u s ( i t ) ,
    and the function g ¯ ( μ ) has the asymptotic expansion …
    12.10.30 v ¯ s ( t ) = i s v s ( i t ) .
    20: 20.11 Generalizations and Analogs
    This is the discrete analog of the Poisson identity (§1.8(iv)). … As in §20.11(ii), the modulus k of elliptic integrals19.2(ii)), Jacobian elliptic functions (§22.2), and Weierstrass elliptic functions (§23.6(ii)) can be expanded in q -series via (20.9.1). …