About the Project

complex variables

AdvancedHelp

(0.011 seconds)

41—50 of 504 matching pages

41: 4.25 Continued Fractions
4.25.1 tan z = z 1 z 2 3 z 2 5 z 2 7 , z ± 1 2 π , ± 3 2 π , .
4.25.2 tan ( a z ) = a tan z 1 + ( 1 a 2 ) tan 2 z 3 + ( 4 a 2 ) tan 2 z 5 + ( 9 a 2 ) tan 2 z 7 + , | z | < 1 2 π , a z ± 1 2 π , ± 3 2 π , .
4.25.3 arcsin z 1 z 2 = z 1 1 2 z 2 3 1 2 z 2 5 3 4 z 2 7 3 4 z 2 9 ,
4.25.4 arctan z = z 1 + z 2 3 + 4 z 2 5 + 9 z 2 7 + 16 z 2 9 + ,
4.25.5 e 2 a arctan ( 1 / z ) = 1 + 2 a z a + a 2 + 1 3 z + a 2 + 4 5 z + a 2 + 9 7 z + ,
42: 4.19 Maclaurin Series and Laurent Series
4.19.1 sin z = z z 3 3 ! + z 5 5 ! z 7 7 ! + ,
4.19.2 cos z = 1 z 2 2 ! + z 4 4 ! z 6 6 ! + .
4.19.3 tan z = z + z 3 3 + 2 15 z 5 + 17 315 z 7 + + ( 1 ) n 1 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π ,
4.19.4 csc z = 1 z + z 6 + 7 360 z 3 + 31 15120 z 5 + + ( 1 ) n 1 2 ( 2 2 n 1 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , 0 < | z | < π ,
4.19.5 sec z = 1 + z 2 2 + 5 24 z 4 + 61 720 z 6 + + ( 1 ) n E 2 n ( 2 n ) ! z 2 n + , | z | < 1 2 π ,
43: 6.6 Power Series
6.6.2 E 1 ( z ) = γ ln z n = 1 ( 1 ) n z n n ! n .
6.6.4 Ein ( z ) = n = 1 ( 1 ) n 1 z n n ! n ,
6.6.5 Si ( z ) = n = 0 ( 1 ) n z 2 n + 1 ( 2 n + 1 ) ! ( 2 n + 1 ) ,
6.6.6 Ci ( z ) = γ + ln z + n = 1 ( 1 ) n z 2 n ( 2 n ) ! ( 2 n ) .
44: 8.5 Confluent Hypergeometric Representations
8.5.1 γ ( a , z ) = a 1 z a e z M ( 1 , 1 + a , z ) = a 1 z a M ( a , 1 + a , z ) , a 0 , 1 , 2 , .
8.5.2 γ ( a , z ) = e z 𝐌 ( 1 , 1 + a , z ) = 𝐌 ( a , 1 + a , z ) .
8.5.3 Γ ( a , z ) = e z U ( 1 a , 1 a , z ) = z a e z U ( 1 , 1 + a , z ) .
8.5.4 γ ( a , z ) = a 1 z 1 2 a 1 2 e 1 2 z M 1 2 a 1 2 , 1 2 a ( z ) .
8.5.5 Γ ( a , z ) = e 1 2 z z 1 2 a 1 2 W 1 2 a 1 2 , 1 2 a ( z ) .
45: 10.56 Generating Functions
10.56.1 cos z 2 2 z t z = cos z z + n = 1 t n n ! 𝗃 n 1 ( z ) ,
10.56.2 sin z 2 2 z t z = sin z z + n = 1 t n n ! 𝗒 n 1 ( z ) .
10.56.3 cosh z 2 + 2 i z t z = cosh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 1 ) ( z ) ,
10.56.4 sinh z 2 + 2 i z t z = sinh z z + n = 1 ( i t ) n n ! 𝗂 n 1 ( 2 ) ( z ) ,
10.56.5 exp ( z 2 + 2 i z t ) z = e z z + 2 π n = 1 ( i t ) n n ! 𝗄 n 1 ( z ) .
46: 4.37 Inverse Hyperbolic Functions
4.37.10 arcsinh ( z ) = arcsinh z .
4.37.13 arccsch ( z ) = arccsch z .
4.37.26 z = sinh w ,
4.37.27 z = cosh w ,
4.37.28 z = tanh w ,
47: 8.8 Recurrence Relations and Derivatives
8.8.1 γ ( a + 1 , z ) = a γ ( a , z ) z a e z ,
8.8.2 Γ ( a + 1 , z ) = a Γ ( a , z ) + z a e z .
8.8.3 w ( a + 2 , z ) ( a + 1 + z ) w ( a + 1 , z ) + a z w ( a , z ) = 0 .
8.8.4 z γ ( a + 1 , z ) = γ ( a , z ) e z Γ ( a + 1 ) .
8.8.5 P ( a + 1 , z ) = P ( a , z ) z a e z Γ ( a + 1 ) ,
48: 5.6 Inequalities
5.6.4 x 1 s < Γ ( x + 1 ) Γ ( x + s ) < ( x + 1 ) 1 s , 0 < s < 1 .
5.6.5 exp ( ( 1 s ) ψ ( x + s 1 / 2 ) ) Γ ( x + 1 ) Γ ( x + s ) exp ( ( 1 s ) ψ ( x + 1 2 ( s + 1 ) ) ) , 0 < s < 1 .
§5.6(ii) Complex Variables
5.6.8 | Γ ( z + a ) Γ ( z + b ) | 1 | z | b a .
5.6.9 | Γ ( z ) | ( 2 π ) 1 / 2 | z | x ( 1 / 2 ) e π | y | / 2 exp ( 1 6 | z | 1 ) .
49: 25.14 Lerch’s Transcendent
25.14.1 Φ ( z , s , a ) n = 0 z n ( a + n ) s , | z | < 1 ; s > 1 , | z | = 1 .
25.14.2 ζ ( s , a ) = Φ ( 1 , s , a ) , s > 1 , a 0 , 1 , 2 , ,
25.14.3 Li s ( z ) = z Φ ( z , s , 1 ) , s > 1 , | z | 1 .
25.14.4 Φ ( z , s , a ) = z m Φ ( z , s , a + m ) + n = 0 m 1 z n ( a + n ) s .
25.14.5 Φ ( z , s , a ) = 1 Γ ( s ) 0 x s 1 e a x 1 z e x d x , s > 1 , a > 0 if z = 1 ; s > 0 , a > 0 if z [ 1 , ) .
50: 6.11 Relations to Other Functions
6.11.1 E 1 ( z ) = Γ ( 0 , z ) .
6.11.2 E 1 ( z ) = e z U ( 1 , 1 , z ) ,