complete elliptic integrals

(0.024 seconds)

1—10 of 87 matching pages

1: 29.10 Lamé Functions with Imaginary Periods
29.10.2 $z^{\prime}=\mathrm{i}(z-K-\mathrm{i}{K^{\prime}}),$
$\mathit{Ec}^{2m}_{\nu}\left(\mathrm{i}(z-K-\mathrm{i}{K^{\prime}}),{k^{\prime}% }^{2}\right),$
$\mathit{Ec}^{2m+1}_{\nu}\left(\mathrm{i}(z-K-\mathrm{i}{K^{\prime}}),{k^{% \prime}}^{2}\right),$
$\mathit{Es}^{2m+1}_{\nu}\left(\mathrm{i}(z-K-\mathrm{i}{K^{\prime}}),{k^{% \prime}}^{2}\right),$
The first and the fourth functions have period $2\mathrm{i}{K^{\prime}}$; the second and the third have period $4\mathrm{i}{K^{\prime}}$. …
3: 22.21 Tables
Spenceley and Spenceley (1947) tabulates $\operatorname{sn}\left(Kx,k\right)$, $\operatorname{cn}\left(Kx,k\right)$, $\operatorname{dn}\left(Kx,k\right)$, $\operatorname{am}\left(Kx,k\right)$, $\mathcal{E}\left(Kx,k\right)$ for $\operatorname{arcsin}k=1^{\circ}(1^{\circ})89^{\circ}$ and $x=0\left(\tfrac{1}{90}\right)1$ to 12D, or 12 decimals of a radian in the case of $\operatorname{am}\left(Kx,k\right)$. Curtis (1964b) tabulates $\operatorname{sn}\left(mK/n,k\right)$, $\operatorname{cn}\left(mK/n,k\right)$, $\operatorname{dn}\left(mK/n,k\right)$ for $n=2(1)15$, $m=1(1)n-1$, and $q$ (not $k$) $=0(.005)0.35$ to 20D. … Zhang and Jin (1996, p. 678) tabulates $\operatorname{sn}\left(Kx,k\right)$, $\operatorname{cn}\left(Kx,k\right)$, $\operatorname{dn}\left(Kx,k\right)$ for $k=\frac{1}{4},\frac{1}{2}$ and $x=0(.1)4$ to 7D. …
4: 22.4 Periods, Poles, and Zeros
Figure 22.4.1 illustrates the locations in the $z$-plane of the poles and zeros of the three principal Jacobian functions in the rectangle with vertices $0$, $2K$, $2K+2iK^{\prime}$, $2iK^{\prime}$. … This half-period will be plus or minus a member of the triple ${K,iK^{\prime},K+iK^{\prime}}$; the other two members of this triple are quarter periods of $\operatorname{pq}\left(z,k\right)$. …
6: 29.14 Orthogonality
29.14.2 $\langle g,h\rangle=\int_{0}^{K}\!\!\int_{0}^{{K^{\prime}}}w(s,t)g(s,t)h(s,t)\,% \mathrm{d}t\,\mathrm{d}s,$
29.14.3 $w(s,t)={\operatorname{sn}}^{2}\left(K+\mathrm{i}t,k\right)-{\operatorname{sn}}% ^{2}\left(s,k\right).$
29.14.4 $\mathit{sE}^{m}_{2n+1}\left(s,k^{2}\right)\mathit{sE}^{m}_{2n+1}\left(K+% \mathrm{i}t,k^{2}\right),$
29.14.5 $\mathit{cE}^{m}_{2n+1}\left(s,k^{2}\right)\mathit{cE}^{m}_{2n+1}\left(K+% \mathrm{i}t,k^{2}\right),$
29.14.11 $\langle g,h\rangle=\int_{0}^{4K}\!\!\int_{0}^{2{K^{\prime}}}w(s,t)g(s,t)h(s,t)% \,\mathrm{d}t\,\mathrm{d}s,$
7: 29.17 Other Solutions
29.17.1 $F(z)=E(z)\int_{\mathrm{i}{K^{\prime}}}^{z}\frac{\,\mathrm{d}u}{(E(u))^{2}}.$
They are algebraic functions of $\operatorname{sn}\left(z,k\right)$, $\operatorname{cn}\left(z,k\right)$, and $\operatorname{dn}\left(z,k\right)$, and have primitive period $8K$. … Lamé–Wangerin functions are solutions of (29.2.1) with the property that $(\operatorname{sn}\left(z,k\right))^{1/2}w(z)$ is bounded on the line segment from $\mathrm{i}{K^{\prime}}$ to $2K+\mathrm{i}{K^{\prime}}$. …
8: 22.11 Fourier and Hyperbolic Series
22.11.3 $\operatorname{dn}\left(z,k\right)=\frac{\pi}{2K}+\frac{2\pi}{K}\sum_{n=1}^{% \infty}\frac{q^{n}\cos\left(2n\zeta\right)}{1+q^{2n}}.$
Next, with $E=E\left(k\right)$ denoting the complete elliptic integral of the second kind (§19.2(ii)) and $q\exp\left(2|\Im\zeta|\right)<1$,
22.11.13 ${\operatorname{sn}}^{2}\left(z,k\right)=\frac{1}{k^{2}}\left(1-\frac{E}{K}% \right)-\frac{2\pi^{2}}{k^{2}K^{2}}\sum_{n=1}^{\infty}\frac{nq^{n}}{1-q^{2n}}% \cos\left(2n\zeta\right).$
22.11.14 $k^{2}{\operatorname{sn}}^{2}\left(z,k\right)=\frac{{E^{\prime}}}{{K^{\prime}}}% -\left(\frac{\pi}{2{K^{\prime}}}\right)^{2}\sum_{n=-\infty}^{\infty}\left({% \operatorname{sech}}^{2}\left(\frac{\pi}{2{K^{\prime}}}(z-2nK)\right)\right),$
where ${E^{\prime}}={E^{\prime}}\left(k\right)$ is defined by §19.2.9. …