About the Project

biharmonic operator

AdvancedHelp

(0.001 seconds)

21—30 of 86 matching pages

21: 10.40 Asymptotic Expansions for Large Argument
10.40.11 | R ( ν , z ) | 2 | a ( ν ) | 𝒱 z , ( t ) exp ( | ν 2 1 4 | 𝒱 z , ( t 1 ) ) ,
where 𝒱 denotes the variational operator2.3(i)), and the paths of variation are subject to the condition that | t | changes monotonically. Bounds for 𝒱 z , ( t ) are given by
10.40.12 𝒱 z , ( t ) { | z | , | ph z | 1 2 π , χ ( ) | z | , 1 2 π | ph z | π , 2 χ ( ) | z | , π | ph z | < 3 2 π ,
22: 35.2 Laplace Transform
35.2.3 f 1 f 2 ( 𝐓 ) = 𝟎 < 𝐗 < 𝐓 f 1 ( 𝐓 𝐗 ) f 2 ( 𝐗 ) d 𝐗 .
23: Bibliography R
  • M. Reed and B. Simon (1978) Methods of Modern Mathematical Physics, Vol. 4, Analysis of Operators. Academic Press, New York.
  • S. Ritter (1998) On the computation of Lamé functions, of eigenvalues and eigenfunctions of some potential operators. Z. Angew. Math. Mech. 78 (1), pp. 66–72.
  • G. Rota, D. Kahaner, and A. Odlyzko (1973) On the foundations of combinatorial theory. VIII. Finite operator calculus. J. Math. Anal. Appl. 42, pp. 684–760.
  • J. Rushchitsky and S. Rushchitska (2000) On Simple Waves with Profiles in the form of some Special Functions—Chebyshev-Hermite, Mathieu, Whittaker—in Two-phase Media. In Differential Operators and Related Topics, Vol. I (Odessa, 1997), Operator Theory: Advances and Applications, Vol. 117, pp. 313–322.
  • 24: 17.2 Calculus
    17.2.41 𝒟 q f ( z ) = { f ( z ) f ( z q ) ( 1 q ) z , z 0 , f ( 0 ) , z = 0 ,
    17.2.42 f [ n ] ( z ) = 𝒟 q n f ( z ) = { z n ( 1 q ) n j = 0 n q n j + ( j + 1 2 ) ( 1 ) j [ n j ] q f ( z q j ) , z 0 , f ( n ) ( 0 ) ( q ; q ) n n ! ( 1 q ) n , z = 0 .
    17.2.43 𝒟 q ( f ( z ) g ( z ) ) = g ( z ) f [ 1 ] ( z ) + f ( z q ) g [ 1 ] ( z ) .
    17.2.44 𝒟 q n ( f ( z ) g ( z ) ) = j = 0 n [ n j ] q f [ n j ] ( z q j ) g [ j ] ( z ) .
    25: 16.8 Differential Equations
    16.8.3 ( ϑ ( ϑ + b 1 1 ) ( ϑ + b q 1 ) z ( ϑ + a 1 ) ( ϑ + a p ) ) w = 0 .
    16.8.4 z q 𝐷 q + 1 w + j = 1 q z j 1 ( α j z + β j ) 𝐷 j w + α 0 w = 0 , p q ,
    16.8.5 z q ( 1 z ) 𝐷 q + 1 w + j = 1 q z j 1 ( α j z + β j ) 𝐷 j w + α 0 w = 0 , p = q + 1 ,
    26: 18.39 Applications in the Physical Sciences
    The fundamental quantum Schrödinger operator, also called the Hamiltonian, , is a second order differential operator of the form … Analogous to (18.39.7) the 3D Schrödinger operator is …where L 2 is the (squared) angular momentum operator (14.30.12). … Here tridiagonal representations of simple Schrödinger operators play a similar role. The radial operator (18.39.28) …
    27: 19.4 Derivatives and Differential Equations
    Then
    19.4.8 ( k k 2 D k 2 + ( 1 3 k 2 ) D k k ) F ( ϕ , k ) = k sin ϕ cos ϕ ( 1 k 2 sin 2 ϕ ) 3 / 2 ,
    19.4.9 ( k k 2 D k 2 + k 2 D k + k ) E ( ϕ , k ) = k sin ϕ cos ϕ 1 k 2 sin 2 ϕ .
    28: 24.4 Basic Properties
    §24.4(viii) Symbolic Operations
    29: 1.4 Calculus of One Variable
    1.4.33 𝒱 a , b ( f ) = sup j = 1 n | f ( x j ) f ( x j 1 ) | ,
    If 𝒱 a , b ( f ) < , then f ( x ) is of bounded variation on ( a , b ) . In this case, g ( x ) = 𝒱 a , x ( f ) and h ( x ) = 𝒱 a , x ( f ) f ( x ) are nondecreasing bounded functions and f ( x ) = g ( x ) h ( x ) . …
    1.4.34 𝒱 a , b ( f ) = a b | f ( x ) | d x ,
    Lastly, whether or not the real numbers a and b satisfy a < b , and whether or not they are finite, we define 𝒱 a , b ( f ) by (1.4.34) whenever this integral exists. …
    30: Bibliography K
  • T. H. Koornwinder (2006) Lowering and Raising Operators for Some Special Orthogonal Polynomials. In Jack, Hall-Littlewood and Macdonald Polynomials, Contemp. Math., Vol. 417, pp. 227–238.
  • T. H. Koornwinder (2015) Fractional integral and generalized Stieltjes transforms for hypergeometric functions as transmutation operators. SIGMA Symmetry Integrability Geom. Methods Appl. 11, pp. Paper 074, 22.
  • T. Koornwinder, A. Kostenko, and G. Teschl (2018) Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator. Adv. Math. 333, pp. 796–821.
  • I. M. Krichever and S. P. Novikov (1989) Algebras of Virasoro type, the energy-momentum tensor, and operator expansions on Riemann surfaces. Funktsional. Anal. i Prilozhen. 23 (1), pp. 24–40 (Russian).
  • K. H. Kwon, L. L. Littlejohn, and G. J. Yoon (2006) Construction of differential operators having Bochner-Krall orthogonal polynomials as eigenfunctions. J. Math. Anal. Appl. 324 (1), pp. 285–303.