About the Project

asymptotic expansions for large zeros

AdvancedHelp

(0.006 seconds)

21—30 of 40 matching pages

21: 2.3 Integrals of a Real Variable
Then … For the Fourier integral …
§2.3(ii) Watson’s Lemma
Then the series obtained by substituting (2.3.7) into (2.3.1) and integrating formally term by term yields an asymptotic expansion: … Then …
22: Bibliography T
  • N. M. Temme (1979b) The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10 (4), pp. 757–766.
  • N. M. Temme (1986) Laguerre polynomials: Asymptotics for large degree. Technical report Technical Report AM-R8610, CWI, Amsterdam, The Netherlands.
  • N. M. Temme (1995a) Asymptotics of zeros of incomplete gamma functions. Ann. Numer. Math. 2 (1-4), pp. 415–423.
  • N.M. Temme and E.J.M. Veling (2022) Asymptotic expansions of Kummer hypergeometric functions with three asymptotic parameters a, b and z. Indagationes Mathematicae.
  • N. M. Temme (2022) Asymptotic expansions of Kummer hypergeometric functions for large values of the parameters. Integral Transforms Spec. Funct. 33 (1), pp. 16–31.
  • 23: Bibliography S
  • A. Sharples (1971) Uniform asymptotic expansions of modified Mathieu functions. J. Reine Angew. Math. 247, pp. 1–17.
  • A. Sidi (1985) Asymptotic expansions of Mellin transforms and analogues of Watson’s lemma. SIAM J. Math. Anal. 16 (4), pp. 896–906.
  • A. Sidi (2010) A simple approach to asymptotic expansions for Fourier integrals of singular functions. Appl. Math. Comput. 216 (11), pp. 3378–3385.
  • A. Sidi (2011) Asymptotic expansion of Mellin transforms in the complex plane. Int. J. Pure Appl. Math. 71 (3), pp. 465–480.
  • W. F. Sun (1996) Uniform asymptotic expansions of Hermite polynomials. M. Phil. thesis, City University of Hong Kong.
  • 24: Bibliography L
  • J. L. López (2001) Uniform asymptotic expansions of symmetric elliptic integrals. Constr. Approx. 17 (4), pp. 535–559.
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013a) Asymptotics of the first Appell function F 1 with large parameters II. Integral Transforms Spec. Funct. 24 (12), pp. 982–999.
  • J. L. López (1999) Asymptotic expansions of the Whittaker functions for large order parameter. Methods Appl. Anal. 6 (2), pp. 249–256.
  • J. L. López and N. M. Temme (2010b) Large degree asymptotics of generalized Bernoulli and Euler polynomials. J. Math. Anal. Appl. 363 (1), pp. 197–208.
  • D. Ludwig (1966) Uniform asymptotic expansions at a caustic. Comm. Pure Appl. Math. 19, pp. 215–250.
  • 25: 9.12 Scorer Functions
    §9.12(viii) Asymptotic Expansions
    For other phase ranges combine these results with the connection formulas (9.12.11)–(9.12.14) and the asymptotic expansions given in §9.7. …
    Integrals
    §9.12(ix) Zeros
    For the above properties and further results, including the distribution of complex zeros, asymptotic approximations for the numerically large real or complex zeros, and numerical tables see Gil et al. (2003c). …
    26: Bibliography C
  • F. Calogero (1978) Asymptotic behaviour of the zeros of the (generalized) Laguerre polynomial L n α ( x )  as the index α  and limiting formula relating Laguerre polynomials of large index and large argument to Hermite polynomials. Lett. Nuovo Cimento (2) 23 (3), pp. 101–102.
  • Y. Chen and M. E. H. Ismail (1998) Asymptotics of the largest zeros of some orthogonal polynomials. J. Phys. A 31 (25), pp. 5525–5544.
  • J. A. Cochran (1966b) The asymptotic nature of zeros of cross-product Bessel functions. Quart. J. Mech. Appl. Math. 19 (4), pp. 511–522.
  • E. T. Copson (1963) On the asymptotic expansion of Airy’s integral. Proc. Glasgow Math. Assoc. 6, pp. 113–115.
  • E. T. Copson (1965) Asymptotic Expansions. Cambridge Tracts in Mathematics and Mathematical Physics, Cambridge University Press, New York.
  • 27: Bibliography P
  • R. B. Paris (2002a) Error bounds for the uniform asymptotic expansion of the incomplete gamma function. J. Comput. Appl. Math. 147 (1), pp. 215–231.
  • R. B. Paris (2002b) A uniform asymptotic expansion for the incomplete gamma function. J. Comput. Appl. Math. 148 (2), pp. 323–339.
  • R. B. Paris (2002c) Exponential asymptotics of the Mittag-Leffler function. Proc. Roy. Soc. London Ser. A 458, pp. 3041–3052.
  • R. B. Paris (2003) The asymptotic expansion of a generalised incomplete gamma function. J. Comput. Appl. Math. 151 (2), pp. 297–306.
  • R. B. Paris (2004) Exactification of the method of steepest descents: The Bessel functions of large order and argument. Proc. Roy. Soc. London Ser. A 460, pp. 2737–2759.
  • 28: 10.75 Tables
  • Olver (1962) provides tables for the uniform asymptotic expansions given in §10.20(i), including ζ and ( 4 ζ / ( 1 x 2 ) ) 1 4 as functions of x ( = z ) and the coefficients A k ( ζ ) , B k ( ζ ) , C k ( ζ ) , D k ( ζ ) as functions of ζ . These enable J ν ( ν x ) , Y ν ( ν x ) , J ν ( ν x ) , Y ν ( ν x ) to be computed to 10S when ν 15 , except in the neighborhoods of zeros.

  • Real Zeros
  • Olver (1960) tabulates j n , m , J n ( j n , m ) , j n , m , J n ( j n , m ) , y n , m , Y n ( y n , m ) , y n , m , Y n ( y n , m ) , n = 0 ( 1 2 ) 20 1 2 , m = 1 ( 1 ) 50 , 8D. Also included are tables of the coefficients in the uniform asymptotic expansions of these zeros and associated values as n ; see §10.21(viii), and more fully Olver (1954).

  • Complex Zeros
  • Olver (1960) tabulates a n , m , 𝗃 n ( a n , m ) , b n , m , 𝗒 n ( b n , m ) , n = 1 ( 1 ) 20 , m = 1 ( 1 ) 50 , 8D. Also included are tables of the coefficients in the uniform asymptotic expansions of these zeros and associated values as n .

  • 29: 9.17 Methods of Computation
    §9.17(i) Maclaurin Expansions
    Although the Maclaurin-series expansions of §§9.4 and 9.12(vi) converge for all finite values of z , they are cumbersome to use when | z | is large owing to slowness of convergence and cancellation. For large | z | the asymptotic expansions of §§9.7 and 9.12(viii) should be used instead. …
    §9.17(v) Zeros
    Zeros of the Airy functions, and their derivatives, can be computed to high precision via Newton’s rule (§3.8(ii)) or Halley’s rule (§3.8(v)), using values supplied by the asymptotic expansions of §9.9(iv) as initial approximations. …
    30: 2.4 Contour Integrals
    §2.4(i) Watson’s Lemma
    Then … For large t , the asymptotic expansion of q ( t ) may be obtained from (2.4.3) by Haar’s method. This depends on the availability of a comparison function F ( z ) for Q ( z ) that has an inverse transform …For examples see Olver (1997b, pp. 315–320).
    §2.4(iii) Laplace’s Method