About the Project

as z%E2%86%920

AdvancedHelp

(0.002 seconds)

1—10 of 734 matching pages

1: 28.26 Asymptotic Approximations for Large q
28.26.3 ϕ = 2 h sinh z ( m + 1 2 ) arctan ( sinh z ) .
Then as h + with fixed z in z > 0 and fixed s = 2 m + 1 ,
28.26.4 Fc m ( z , h ) 1 + s 8 h cosh 2 z + 1 2 11 h 2 ( s 4 + 86 s 2 + 105 cosh 4 z s 4 + 22 s 2 + 57 cosh 2 z ) + 1 2 14 h 3 ( s 5 + 14 s 3 + 33 s cosh 2 z 2 s 5 + 124 s 3 + 1122 s cosh 4 z + 3 s 5 + 290 s 3 + 1627 s cosh 6 z ) + ,
The asymptotic expansions of Fs m ( z , h ) and Gs m ( z , h ) in the same circumstances are also given by the right-hand sides of (28.26.4) and (28.26.5), respectively. … For asymptotic approximations for M ν ( 3 , 4 ) ( z , h ) see also Naylor (1984, 1987, 1989).
2: Bibliography Y
  • Z. M. Yan (1992) Generalized Hypergeometric Functions and Laguerre Polynomials in Two Variables. In Hypergeometric Functions on Domains of Positivity, Jack Polynomials, and Applications (Tampa, FL, 1991), Contemporary Mathematics, Vol. 138, pp. 239–259.
  • K. Yang and M. de Llano (1989) Simple Variational Proof That Any Two-Dimensional Potential Well Supports at Least One Bound State. American Journal of Physics 57 (1), pp. 85–86.
  • 3: Sidebar 22.SB1: Decay of a Soliton in a Bose–Einstein Condensate
    Cornell, Watching Dark Solitons Decay into Vortex Rings in a Bose–Einstein Condensate, Phys. Rev. Lett. 86, 2926–2929 (2001)
    4: Bibliography F
  • V. N. Faddeeva and N. M. Terent’ev (1954) Tablicy značeniĭ funkcii w ( z ) = e z 2 ( 1 + 2 i π 0 z e t 2 𝑑 t ) ot kompleksnogo argumenta. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow (Russian).
  • V. N. Faddeyeva and N. M. Terent’ev (1961) Tables of Values of the Function w ( z ) = e z 2 ( 1 + 2 i π 1 / 2 0 z e t 2 𝑑 t ) for Complex Argument. Edited by V. A. Fok; translated from the Russian by D. G. Fry. Mathematical Tables Series, Vol. 11, Pergamon Press, Oxford.
  • H. E. Fettis (1976) Complex roots of sin z = a z , cos z = a z , and cosh z = a z . Math. Comp. 30 (135), pp. 541–545.
  • A. S. Fokas, A. R. Its, and A. V. Kitaev (1991) Discrete Painlevé equations and their appearance in quantum gravity. Comm. Math. Phys. 142 (2), pp. 313–344.
  • C. L. Frenzen (1990) Error bounds for a uniform asymptotic expansion of the Legendre function Q n m ( cosh z ) . SIAM J. Math. Anal. 21 (2), pp. 523–535.
  • 5: 4.14 Definitions and Periodicity
    4.14.4 tan z = sin z cos z ,
    4.14.5 csc z = 1 sin z ,
    The functions sin z and cos z are entire. In the zeros of sin z are z = k π , k ; the zeros of cos z are z = ( k + 1 2 ) π , k . The functions tan z , csc z , sec z , and cot z are meromorphic, and the locations of their zeros and poles follow from (4.14.4) to (4.14.7). …
    6: 10.29 Recurrence Relations and Derivatives
    With 𝒵 ν ( z ) defined as in §10.25(ii),
    𝒵 ν 1 ( z ) 𝒵 ν + 1 ( z ) = ( 2 ν / z ) 𝒵 ν ( z ) ,
    𝒵 ν ( z ) = 𝒵 ν 1 ( z ) ( ν / z ) 𝒵 ν ( z ) ,
    For results on modified quotients of the form z 𝒵 ν ± 1 ( z ) / 𝒵 ν ( z ) see Onoe (1955) and Onoe (1956). …
    ( 1 z d d z ) k ( z ν 𝒵 ν ( z ) ) = z ν k 𝒵 ν k ( z ) ,
    7: 25.16 Mathematical Applications
    H ( s ) is the special case H ( s , 1 ) of the function
    25.16.11 H ( s , z ) = n = 1 1 n s m = 1 n 1 m z , ( s + z ) > 1 ,
    25.16.12 H ( s , z ) + H ( z , s ) = ζ ( s ) ζ ( z ) + ζ ( s + z ) ,
    when both H ( s , z ) and H ( z , s ) are finite. For further properties of H ( s , z ) see Apostol and Vu (1984). …
    8: 4.28 Definitions and Periodicity
    4.28.9 cos ( i z ) = cosh z ,
    4.28.11 csc ( i z ) = i csch z ,
    4.28.12 sec ( i z ) = sech z ,
    The functions sinh z and cosh z have period 2 π i , and tanh z has period π i . The zeros of sinh z and cosh z are z = i k π and z = i ( k + 1 2 ) π , respectively, k .
    9: 10.51 Recurrence Relations and Derivatives
    Let f n ( z ) denote any of 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗁 n ( 1 ) ( z ) , or 𝗁 n ( 2 ) ( z ) . …
    ( 1 z d d z ) m ( z n + 1 f n ( z ) ) = z n m + 1 f n m ( z ) , m = 0 , 1 , , n ,
    ( 1 z d d z ) m ( z n f n ( z ) ) = ( 1 ) m z n m f n + m ( z ) , m = 0 , 1 , .
    Let g n ( z ) denote 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 2 ) ( z ) , or ( 1 ) n 𝗄 n ( z ) . Then …
    10: Bibliography W
  • E. Wagner (1988) Asymptotische Entwicklungen der hypergeometrischen Funktion F ( a , b , c , z ) für | c | und konstante Werte a , b und z . Demonstratio Math. 21 (2), pp. 441–458 (German).
  • J. Walker (1988) Shadows cast on the bottom of a pool are not like other shadows. Why?. Scientific American 259, pp. 86–89.
  • D. V. Widder (1979) The Airy transform. Amer. Math. Monthly 86 (4), pp. 271–277.
  • R. Wong (1973a) An asymptotic expansion of W k , m ( z ) with large variable and parameters. Math. Comp. 27 (122), pp. 429–436.
  • R. Wong (1973b) On uniform asymptotic expansion of definite integrals. J. Approximation Theory 7 (1), pp. 76–86.