About the Project

argument ±1

AdvancedHelp

(0.008 seconds)

21—30 of 137 matching pages

21: Bibliography H
  • P. I. Hadži (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Štiince RSS Moldoven. 1976 (1), pp. 80–84, 96 (Russian).
  • 22: 11.1 Special Notation
    Unless indicated otherwise, primes denote derivatives with respect to the argument. For the functions J ν ( z ) , Y ν ( z ) , H ν ( 1 ) ( z ) , H ν ( 2 ) ( z ) , I ν ( z ) , and K ν ( z ) see §§10.2(ii), 10.25(ii). …
    23: 35.9 Applications
    In multivariate statistical analysis based on the multivariate normal distribution, the probability density functions of many random matrices are expressible in terms of generalized hypergeometric functions of matrix argument F q p , with p 2 and q 1 . …
    24: 17.4 Basic Hypergeometric Functions
    17.4.5 Φ ( 1 ) ( a ; b , b ; c ; q ; x , y ) = m , n 0 ( a ; q ) m + n ( b ; q ) m ( b ; q ) n x m y n ( q ; q ) m ( q ; q ) n ( c ; q ) m + n ,
    17.4.6 Φ ( 2 ) ( a ; b , b ; c , c ; q ; x , y ) = m , n 0 ( a ; q ) m + n ( b ; q ) m ( b ; q ) n x m y n ( q , c ; q ) m ( q , c ; q ) n ,
    17.4.7 Φ ( 3 ) ( a , a ; b , b ; c ; q ; x , y ) = m , n 0 ( a , b ; q ) m ( a , b ; q ) n x m y n ( q ; q ) m ( q ; q ) n ( c ; q ) m + n ,
    17.4.8 Φ ( 4 ) ( a , b ; c , c ; q ; x , y ) = m , n 0 ( a , b ; q ) m + n x m y n ( q , c ; q ) m ( q , c ; q ) n .
    25: Bibliography B
  • W. Bühring (1992) Generalized hypergeometric functions at unit argument. Proc. Amer. Math. Soc. 114 (1), pp. 145–153.
  • R. Bulirsch (1965b) Numerical calculation of elliptic integrals and elliptic functions. Numer. Math. 7 (1), pp. 78–90.
  • 26: 34.7 Basic Properties: 9 j Symbol
    Odd permutations of columns or rows introduce a phase factor ( 1 ) R , where R is the sum of all arguments of the 9 j symbol. …
    27: 35.5 Bessel Functions of Matrix Argument
    35.5.3 B ν ( 𝐓 ) = 𝛀 etr ( ( 𝐓 𝐗 + 𝐗 1 ) ) | 𝐗 | ν 1 2 ( m + 1 ) d 𝐗 , ν , 𝐓 𝛀 .
    35.5.7 𝛀 A ν 1 ( 𝐓 𝐗 ) B ν 2 ( 𝐒 𝐗 ) | 𝐗 | ν 1 d 𝐗 = 1 A ν 1 + ν 2 ( 𝟎 ) | 𝐒 | ν 2 | 𝐓 + 𝐒 | ( ν 1 + ν 2 + 1 2 ( m + 1 ) ) , ( ν 1 + ν 2 ) > 1 ; 𝐒 , 𝐓 𝛀 .
    28: 19.9 Inequalities
    19.9.13 Π ( ϕ , α 2 , 0 ) Π ( ϕ , α 2 , k ) min ( Π ( ϕ , α 2 , 0 ) / Δ , Π ( ϕ , α 2 , 1 ) ) .
    19.9.14 3 1 + Δ + cos ϕ < F ( ϕ , k ) sin ϕ < 1 ( Δ cos ϕ ) 1 / 3 ,
    19.9.15 1 < F ( ϕ , k ) / ( ( sin ϕ ) ln ( 4 Δ + cos ϕ ) ) < 4 2 + ( 1 + k 2 ) sin 2 ϕ .
    19.9.17 L F ( ϕ , k ) U L 1 2 ( U + L ) U ,
    29: 2.11 Remainder Terms; Stokes Phenomenon
    However, on combining (2.11.6) with the connection formula (8.19.18), with m = 1 , we derive …
    30: 19.14 Reduction of General Elliptic Integrals
    19.14.1 1 x d t t 3 1 = 3 1 / 4 F ( ϕ , k ) , cos ϕ = 3 + 1 x 3 1 + x , k 2 = 2 3 4 .
    19.14.2 x 1 d t 1 t 3 = 3 1 / 4 F ( ϕ , k ) , cos ϕ = 3 1 + x 3 + 1 x , k 2 = 2 + 3 4 .
    19.14.3 0 x d t 1 + t 4 = sign ( x ) 2 F ( ϕ , k ) , cos ϕ = 1 x 2 1 + x 2 , k 2 = 1 2 .
    19.14.7 sin 2 ϕ = ( γ α ) x 2 a 1 a 2 + γ x 2 .
    19.14.8 sin 2 ϕ = γ α b 1 b 2 y 2 + γ .