About the Project
NIST

approximations

AdvancedHelp

(0.001 seconds)

1—10 of 168 matching pages

1: 16.26 Approximations
§16.26 Approximations
For discussions of the approximation of generalized hypergeometric functions and the Meijer G -function in terms of polynomials, rational functions, and Chebyshev polynomials see Luke (1975, §§5.12 - 5.13) and Luke (1977b, Chapters 1 and 9).
2: 31.13 Asymptotic Approximations
§31.13 Asymptotic Approximations
For asymptotic approximations for the accessory parameter eigenvalues q m , see Fedoryuk (1991) and Slavyanov (1996). For asymptotic approximations of the solutions of Heun’s equation (31.2.1) when two singularities are close together, see Lay and Slavyanov (1999). For asymptotic approximations of the solutions of confluent forms of Heun’s equation in the neighborhood of irregular singularities, see Komarov et al. (1976), Ronveaux (1995, Parts B,C,D,E), Bogush and Otchik (1997), Slavyanov and Veshev (1997), and Lay et al. (1998).
3: 10.76 Approximations
§10.76 Approximations
§10.76(ii) Bessel Functions, Hankel Functions, and Modified Bessel Functions
Bickley Functions
Spherical Bessel Functions
Kelvin Functions
4: 4.47 Approximations
§4.47 Approximations
§4.47(iii) Padé Approximations
Luke (1975, Chapter 3) supplies real and complex approximations for ln , exp , sin , cos , tan , arctan , arcsinh . …
5: 7.24 Approximations
§7.24 Approximations
§7.24(i) Approximations in Terms of Elementary Functions
  • Cody (1969) provides minimax rational approximations for erf x and erfc x . The maximum relative precision is about 20S.

  • Cody (1968) gives minimax rational approximations for the Fresnel integrals (maximum relative precision 19S); for a Fortran algorithm and comments see Snyder (1993).

  • Cody et al. (1970) gives minimax rational approximations to Dawson’s integral F ( x ) (maximum relative precision 20S–22S).

  • 6: 25.20 Approximations
    §25.20 Approximations
  • Cody et al. (1971) gives rational approximations for ζ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • Piessens and Branders (1972) gives the coefficients of the Chebyshev-series expansions of s ζ ( s + 1 ) and ζ ( s + k ) , k = 2 , 3 , 4 , 5 , 8 , for 0 s 1 (23D).

  • Morris (1979) gives rational approximations for Li 2 ( x ) 25.12(i)) for 0.5 x 1 . Precision is varied with a maximum of 24S.

  • Antia (1993) gives minimax rational approximations for Γ ( s + 1 ) F s ( x ) , where F s ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals - < x 2 and 2 x < , with s = - 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 - 4 , 10 - 8 , 10 - 12 .

  • 7: 5.23 Approximations
    §5.23 Approximations
    §5.23(i) Rational Approximations
    §5.23(ii) Expansions in Chebyshev Series
    §5.23(iii) Approximations in the Complex Plane
    See Schmelzer and Trefethen (2007) for a survey of rational approximations to various scaled versions of Γ ( z ) . …
    8: 19.38 Approximations
    §19.38 Approximations
    Minimax polynomial approximations3.11(i)) for K ( k ) and E ( k ) in terms of m = k 2 with 0 m < 1 can be found in Abramowitz and Stegun (1964, §17.3) with maximum absolute errors ranging from 4×10⁻⁵ to 2×10⁻⁸. Approximations of the same type for K ( k ) and E ( k ) for 0 < k 1 are given in Cody (1965a) with maximum absolute errors ranging from 4×10⁻⁵ to 4×10⁻¹⁸. … Approximations for Legendre’s complete or incomplete integrals of all three kinds, derived by Padé approximation of the square root in the integrand, are given in Luke (1968, 1970). …The accuracy is controlled by the number of terms retained in the approximation; for real variables the number of significant figures appears to be roughly twice the number of terms retained, perhaps even for ϕ near π / 2 with the improvements made in the 1970 reference. …
    9: 14.26 Uniform Asymptotic Expansions
    §14.26 Uniform Asymptotic Expansions
    The uniform asymptotic approximations given in §14.15 for P ν - μ ( x ) and Q ν μ ( x ) for 1 < x < are extended to domains in the complex plane in the following references: §§14.15(i) and 14.15(ii), Dunster (2003b); §14.15(iii), Olver (1997b, Chapter 12); §14.15(iv), Boyd and Dunster (1986). … See also Frenzen (1990), Gil et al. (2000), Shivakumar and Wong (1988), Ursell (1984), and Wong (1989) for uniform asymptotic approximations obtained from integral representations.
    10: 32.12 Asymptotic Approximations for Complex Variables
    §32.12 Asymptotic Approximations for Complex Variables