About the Project

am function

AdvancedHelp

(0.001 seconds)

21—29 of 29 matching pages

21: 19 Elliptic Integrals
22: Bibliography S
  • J. Segura and A. Gil (1999) Evaluation of associated Legendre functions off the cut and parabolic cylinder functions. Electron. Trans. Numer. Anal. 9, pp. 137–146.
  • H. Shanker (1939) On the expansion of the parabolic cylinder function in a series of the product of two parabolic cylinder functions. J. Indian Math. Soc. (N. S.) 3, pp. 226–230.
  • C. L. Siegel (1973) Topics in Complex Function Theory. Vol. III: Abelian Functions and Modular Functions of Several Variables. Interscience Tracts in Pure and Applied Mathematics, No. 25, Wiley-Interscience, [John Wiley & Sons, Inc], New York-London-Sydney.
  • G. Springer (1957) Introduction to Riemann Surfaces. Addison-Wesley Publishing Company, Reading, Massachusetts.
  • I. A. Stegun and R. Zucker (1981) Automatic computing methods for special functions. IV. Complex error function, Fresnel integrals, and other related functions. J. Res. Nat. Bur. Standards 86 (6), pp. 661–686.
  • 23: Bibliography W
  • E. L. Wachspress (2000) Evaluating elliptic functions and their inverses. Comput. Math. Appl. 39 (3-4), pp. 131–136.
  • P. L. Walker (1991) Infinitely differentiable generalized logarithmic and exponential functions. Math. Comp. 57 (196), pp. 723–733.
  • P. L. Walker (2012) Reduction formulae for products of theta functions. J. Res. Nat. Inst. Standards and Technology 117, pp. 297–303.
  • H. S. Wall (1948) Analytic Theory of Continued Fractions. D. Van Nostrand Company, Inc., New York.
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • 24: Bibliography M
  • I. G. Macdonald (1990) Hypergeometric Functions.
  • B. Markman (1965) Contribution no. 14. The Riemann zeta function. BIT 5, pp. 138–141.
  • F. Matta and A. Reichel (1971) Uniform computation of the error function and other related functions. Math. Comp. 25 (114), pp. 339–344.
  • S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
  • L. M. Milne-Thomson (1933) The Calculus of Finite Differences. Macmillan and Co. Ltd., London.
  • 25: Bibliography R
  • H. Rademacher (1938) On the partition function p(n). Proc. London Math. Soc. (2) 43 (4), pp. 241–254.
  • E. D. Rainville (1960) Special Functions. The Macmillan Co., New York.
  • S. Ramanujan (1962) Collected Papers of Srinivasa Ramanujan. Chelsea Publishing Co., New York.
  • H. E. Rauch and A. Lebowitz (1973) Elliptic Functions, Theta Functions, and Riemann Surfaces. The Williams & Wilkins Co., Baltimore, MD.
  • R. Reynolds and A. Stauffer (2021) Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics 9 (16).
  • 26: Bibliography T
  • N. M. Temme (1979b) The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10 (4), pp. 757–766.
  • N. M. Temme (1992a) Asymptotic inversion of incomplete gamma functions. Math. Comp. 58 (198), pp. 755–764.
  • N. M. Temme (1978) The numerical computation of special functions by use of quadrature rules for saddle point integrals. II. Gamma functions, modified Bessel functions and parabolic cylinder functions. Report TW 183/78 Mathematisch Centrum, Amsterdam, Afdeling Toegepaste Wiskunde.
  • T. Ton-That, K. I. Gross, D. St. P. Richards, and P. J. Sally (Eds.) (1995) Representation Theory and Harmonic Analysis. Contemporary Mathematics, Vol. 191, American Mathematical Society, Providence, RI.
  • Go. Torres-Vega, J. D. Morales-Guzmán, and A. Zúñiga-Segundo (1998) Special functions in phase space: Mathieu functions. J. Phys. A 31 (31), pp. 6725–6739.
  • 27: Bibliography C
  • B. C. Carlson (1985) The hypergeometric function and the R -function near their branch points. Rend. Sem. Mat. Univ. Politec. Torino (Special Issue), pp. 63–89.
  • E. W. Cheney (1982) Introduction to Approximation Theory. 2nd edition, Chelsea Publishing Co., New York.
  • G. Chrystal (1959a) Algebra: An Elementary Textbook for the Higher Classes of Secondary Schools and for Colleges. 6th edition, Vol. 1, Chelsea Publishing Co., New York.
  • G. Chrystal (1959b) Algebra: An Elementary Textbook for the Higher Classes of Secondary Schools and for Colleges. 6th edition, Vol. 2, Chelsea Publishing Co., New York.
  • A. P. Clarke and W. Marwood (1984) A compact mathematical function package. Australian Computer Journal 16 (3), pp. 107–114.
  • 28: Bibliography J
  • D. L. Jagerman (1974) Some properties of the Erlang loss function. Bell System Tech. J. 53, pp. 525–551.
  • D. S. Jones (2001) Asymptotics of the hypergeometric function. Math. Methods Appl. Sci. 24 (6), pp. 369–389.
  • D. S. Jones (2006) Parabolic cylinder functions of large order. J. Comput. Appl. Math. 190 (1-2), pp. 453–469.
  • C. Jordan (1939) Calculus of Finite Differences. Hungarian Agent Eggenberger Book-Shop, Budapest.
  • C. Jordan (1965) Calculus of Finite Differences. 3rd edition, AMS Chelsea, Providence, RI.
  • 29: Bibliography K
  • S. L. Kalla (1992) On the evaluation of the Gauss hypergeometric function. C. R. Acad. Bulgare Sci. 45 (6), pp. 35–36.
  • R. P. Kanwal (1983) Generalized functions. Mathematics in Science and Engineering, Vol. 171, Academic Press, Inc., Orlando, FL.
  • K. S. Kölbig (1970) Complex zeros of an incomplete Riemann zeta function and of the incomplete gamma function. Math. Comp. 24 (111), pp. 679–696.
  • K. S. Kölbig (1972c) Programs for computing the logarithm of the gamma function, and the digamma function, for complex argument. Comput. Phys. Comm. 4, pp. 221–226.
  • M. D. Kruskal (1974) The Korteweg-de Vries Equation and Related Evolution Equations. In Nonlinear Wave Motion (Proc. AMS-SIAM Summer Sem., Clarkson Coll. Tech., Potsdam, N.Y., 1972), A. C. Newell (Ed.), Lectures in Appl. Math., Vol. 15, pp. 61–83.