About the Project

alternative

AdvancedHelp

(0.001 seconds)

11—20 of 102 matching pages

11: 30.1 Special Notation
Flammer (1957) and Abramowitz and Stegun (1964) use λ m n ( γ ) for λ n m ( γ 2 ) + γ 2 , R m n ( j ) ( γ , z ) for S n m ( j ) ( z , γ ) , and …
12: 16.6 Transformations of Variable
16.6.1 F 2 3 ( a , b , c a b + 1 , a c + 1 ; z ) = ( 1 z ) a F 2 3 ( a b c + 1 , 1 2 a , 1 2 ( a + 1 ) a b + 1 , a c + 1 ; 4 z ( 1 z ) 2 ) .
16.6.2 F 2 3 ( a , 2 b a 1 , 2 2 b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a F 2 3 ( 1 3 a , 1 3 a + 1 3 , 1 3 a + 2 3 b , a b + 3 2 ; 27 z 4 ( 1 z ) 3 ) .
13: 1.1 Special Notation
In the physics, applied maths, and engineering literature a common alternative to a ¯ is a , a being a complex number or a matrix; the Hermitian conjugate of 𝐀 is usually being denoted 𝐀 .
14: 27.13 Functions
27.13.4 ϑ ( x ) = 1 + 2 m = 1 x m 2 , | x | < 1 .
27.13.5 ( ϑ ( x ) ) 2 = 1 + n = 1 r 2 ( n ) x n .
27.13.6 ( ϑ ( x ) ) 2 = 1 + 4 n = 1 ( δ 1 ( n ) δ 3 ( n ) ) x n ,
15: 29.20 Methods of Computation
Alternatively, the zeros can be found by locating the maximum of function g in (29.12.11).
16: 7.17 Inverse Error Functions
For an alternative representation of (7.17.3) see Blair et al. (1976).
17: 13.31 Approximations
13.31.1 A n ( z ) = s = 0 n ( n ) s ( n + 1 ) s ( a ) s ( b ) s ( a + 1 ) s ( b + 1 ) s ( n ! ) 2 F 3 3 ( n + s , n + 1 + s , 1 1 + s , a + 1 + s , b + 1 + s ; z ) ,
18: 16.10 Expansions in Series of F q p Functions
16.10.1 F q + s p + r ( a 1 , , a p , c 1 , , c r b 1 , , b q , d 1 , , d s ; z ζ ) = k = 0 ( 𝐚 ) k ( α ) k ( β ) k ( z ) k ( 𝐛 ) k ( γ + k ) k k ! F q + 1 p + 2 ( α + k , β + k , a 1 + k , , a p + k γ + 2 k + 1 , b 1 + k , , b q + k ; z ) F s + 2 r + 2 ( k , γ + k , c 1 , , c r α , β , d 1 , , d s ; ζ ) .
19: 16.2 Definition and Analytic Properties
16.2.5 𝐅 q p ( 𝐚 ; 𝐛 ; z ) = F q p ( a 1 , , a p b 1 , , b q ; z ) / ( Γ ( b 1 ) Γ ( b q ) ) = k = 0 ( a 1 ) k ( a p ) k Γ ( b 1 + k ) Γ ( b q + k ) z k k ! ;
20: 16.3 Derivatives and Contiguous Functions
16.3.6 z F 1 0 ( ; b + 1 ; z ) + b ( b 1 ) F 1 0 ( ; b ; z ) b ( b 1 ) F 1 0 ( ; b 1 ; z ) = 0 ,