About the Project

Wigner 3j,6j,9j symbols

AdvancedHelp

(0.003 seconds)

7 matching pages

1: 34.1 Special Notation
β–ΊThe main functions treated in this chapter are the Wigner 3 ⁒ j , 6 ⁒ j , 9 ⁒ j symbols, respectively, … β–ΊFor other notations for 3 ⁒ j , 6 ⁒ j , 9 ⁒ j symbols, see Edmonds (1974, pp. 52, 97, 104–105) and Varshalovich et al. (1988, §§8.11, 9.10, 10.10).
2: 34.12 Physical Applications
§34.12 Physical Applications
β–ΊThe angular momentum coupling coefficients ( 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols) are essential in the fields of nuclear, atomic, and molecular physics. For applications in nuclear structure, see de-Shalit and Talmi (1963); in atomic spectroscopy, see Biedenharn and van Dam (1965, pp. 134–200), Judd (1998), Sobelman (1992, Chapter 4), Shore and Menzel (1968, pp. 268–303), and Wigner (1959); in molecular spectroscopy and chemical reactions, see Burshtein and Temkin (1994, Chapter 5), and Judd (1975). 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols are also found in multipole expansions of solutions of the Laplace and Helmholtz equations; see Carlson and Rushbrooke (1950) and Judd (1976).
3: 16.24 Physical Applications
β–Ί
§16.24(iii) 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j Symbols
β–ΊThe 3 ⁒ j symbols, or Clebsch–Gordan coefficients, play an important role in the decomposition of reducible representations of the rotation group into irreducible representations. They can be expressed as F 2 3 functions with unit argument. The coefficients of transformations between different coupling schemes of three angular momenta are related to the Wigner 6 ⁒ j symbols. …Lastly, special cases of the 9 ⁒ j symbols are F 4 5 functions with unit argument. …
4: Joris Van der Jeugt
β–ΊHis research interests are in the following areas: Group theoretical methods in physics; Representation theory of Lie algebras, Lie superalgebras and quantum groups with applications in mathematical physics; 3 n ⁒ j -symbols and their relations to special functions and orthogonal polynomials; Quantum theory, finite quantum systems, quantum oscillator models, Wigner quantum systems; and Parabosons, parafermions and generalized quantum statistics. … β–ΊHis publications on Clebsch-Gordan coefficients, Racah coefficients, 3 n ⁒ j -coefficients and their relation to hypergeometric series are considered as standard and a review is part of the volume on Multivariable Special Functions in the ongoing Askey–Bateman book project. … β–Ί
  • 5: Bibliography R
    β–Ί
  • S. Ramanujan (1927) Some properties of Bernoulli’s numbers (J. Indian Math. Soc. 3 (1911), 219–234.). In Collected Papers,
  • β–Ί
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • β–Ί
  • C. C. J. Roothaan and S. Lai (1997) Calculation of 3 ⁒ n - j symbols by Labarthe’s method. International Journal of Quantum Chemistry 63 (1), pp. 57–64.
  • β–Ί
  • H. Rosengren (1999) Another proof of the triple sum formula for Wigner 9 ⁒ j -symbols. J. Math. Phys. 40 (12), pp. 6689–6691.
  • β–Ί
  • M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr. (1959) The 3 - j and 6 - j Symbols. The Technology Press, MIT, Cambridge, MA.
  • 6: Bibliography W
    β–Ί
  • G. N. Watson (1935b) The surface of an ellipsoid. Quart. J. Math., Oxford Ser. 6, pp. 280–287.
  • β–Ί
  • J. K. G. Watson (1999) Asymptotic approximations for certain 6 - j and 9 - j symbols. J. Phys. A 32 (39), pp. 6901–6902.
  • β–Ί
  • J. V. Wehausen and E. V. Laitone (1960) Surface Waves. In Handbuch der Physik, Vol. 9, Part 3, pp. 446–778.
  • β–Ί
  • E. P. Wigner (1959) Group Theory and its Application to the Quantum Mechanics of Atomic Spectra. Pure and Applied Physics. Vol. 5, Academic Press, New York.
  • β–Ί
  • F. J. Wright (1980) The Stokes set of the cusp diffraction catastrophe. J. Phys. A 13 (9), pp. 2913–2928.
  • 7: Bibliography L
    β–Ί
  • S. Lai and Y. Chiu (1990) Exact computation of the 3 - j and 6 - j symbols. Comput. Phys. Comm. 61 (3), pp. 350–360.
  • β–Ί
  • S. Lai and Y. Chiu (1992) Exact computation of the 9 - j symbols. Comput. Phys. Comm. 70 (3), pp. 544–556.
  • β–Ί
  • E. M. Lifshitz and L. P. PitaevskiΔ­ (1980) Statistical Physics, Part 2: Theory of the Condensed State. Pergamon Press, Oxford.
  • β–Ί
  • J. L. López, P. Pagola, and E. Pérez Sinusía (2013b) Asymptotics of the first Appell function F 1 with large parameters. Integral Transforms Spec. Funct. 24 (9), pp. 715–733.
  • β–Ί
  • J. H. Luscombe and M. Luban (1998) Simplified recursive algorithm for Wigner 3 ⁒ j and 6 ⁒ j symbols. Phys. Rev. E 57 (6), pp. 7274–7277.