About the Project

Weierstrass elliptic-function form

AdvancedHelp

(0.005 seconds)

11—20 of 300 matching pages

11: 23.10 Addition Theorems and Other Identities
§23.10(i) Addition Theorems
§23.10(ii) Duplication Formulas
(23.10.8) continues to hold when e 1 , e 2 , e 3 are permuted cyclically. …
§23.10(iii) n -Tuple Formulas
§23.10(iv) Homogeneity
12: 29.2 Differential Equations
§29.2(i) Lamé’s Equation
§29.2(ii) Other Forms
we have …For the Weierstrass function see §23.2(ii). …
13: 23.4 Graphics
§23.4(i) Real Variables
Line graphs of the Weierstrass functions ( x ) , ζ ( x ) , and σ ( x ) , illustrating the lemniscatic and equianharmonic cases. …
See accompanying text
Figure 23.4.6: σ ( x ; 0 , g 3 ) for 5 x 5 , g 3 = 0. … Magnify
§23.4(ii) Complex Variables
Surfaces for the Weierstrass functions ( z ) , ζ ( z ) , and σ ( z ) . …
14: 19.25 Relations to Other Functions
§19.25(vi) Weierstrass Elliptic Functions
Let 𝕃 be a lattice for the Weierstrass elliptic function ( z ) . …The sign on the right-hand side of (19.25.35) will change whenever one crosses a curve on which ( z ) e j < 0 , for some j . … for some 2 ω j 𝕃 and ( ω j ) = e j . … in which 2 ω 1 and 2 ω 3 are generators for the lattice 𝕃 , ω 2 = ω 1 ω 3 , and η j = ζ ( ω j ) (see (23.2.12)). …
15: 23.23 Tables
§23.23 Tables
2 in Abramowitz and Stegun (1964) gives values of ( z ) , ( z ) , and ζ ( z ) to 7 or 8D in the rectangular and rhombic cases, normalized so that ω 1 = 1 and ω 3 = i a (rectangular case), or ω 1 = 1 and ω 3 = 1 2 + i a (rhombic case), for a = 1. …05, and in the case of ( z ) the user may deduce values for complex z by application of the addition theorem (23.10.1). Abramowitz and Stegun (1964) also includes other tables to assist the computation of the Weierstrass functions, for example, the generators as functions of the lattice invariants g 2 and g 3 . For earlier tables related to Weierstrass functions see Fletcher et al. (1962, pp. 503–505) and Lebedev and Fedorova (1960, pp. 223–226).
16: 23.1 Special Notation
𝕃 lattice in .
= e i π τ nome.
Δ discriminant g 2 3 27 g 3 2 .
The main functions treated in this chapter are the Weierstrass -function ( z ) = ( z | 𝕃 ) = ( z ; g 2 , g 3 ) ; the Weierstrass zeta function ζ ( z ) = ζ ( z | 𝕃 ) = ζ ( z ; g 2 , g 3 ) ; the Weierstrass sigma function σ ( z ) = σ ( z | 𝕃 ) = σ ( z ; g 2 , g 3 ) ; the elliptic modular function λ ( τ ) ; Klein’s complete invariant J ( τ ) ; Dedekind’s eta function η ( τ ) . …
17: 23.6 Relations to Other Functions
§23.6(i) Theta Functions
§23.6(ii) Jacobian Elliptic Functions
§23.6(iii) General Elliptic Functions
§23.6(iv) Elliptic Integrals
18: 23.5 Special Lattices
§23.5(ii) Rectangular Lattice
In this case the lattice roots e 1 , e 2 , and e 3 are real and distinct. …
§23.5(iii) Lemniscatic Lattice
§23.5(iv) Rhombic Lattice
§23.5(v) Equianharmonic Lattice
19: 23.11 Integral Representations
§23.11 Integral Representations
23.11.2 ( z ) = 1 z 2 + 8 0 s ( e s sinh 2 ( 1 2 z s ) f 1 ( s , τ ) + e i τ s sin 2 ( 1 2 z s ) f 2 ( s , τ ) ) d s ,
23.11.3 ζ ( z ) = 1 z + 0 ( e s ( z s sinh ( z s ) ) f 1 ( s , τ ) e i τ s ( z s sin ( z s ) ) f 2 ( s , τ ) ) d s ,
20: 23.19 Interrelations
23.19.3 J ( τ ) = g 2 3 g 2 3 27 g 3 2 ,
where g 2 , g 3 are the invariants of the lattice 𝕃 with generators 1 and τ ; see §23.3(i). …