About the Project

Weierstrass%20P-function

AdvancedHelp

(0.005 seconds)

11—20 of 132 matching pages

11: Peter L. Walker
12: 23.23 Tables
§23.23 Tables
2 in Abramowitz and Stegun (1964) gives values of ( z ) , ( z ) , and ζ ( z ) to 7 or 8D in the rectangular and rhombic cases, normalized so that ω 1 = 1 and ω 3 = i a (rectangular case), or ω 1 = 1 and ω 3 = 1 2 + i a (rhombic case), for a = 1. …05, and in the case of ( z ) the user may deduce values for complex z by application of the addition theorem (23.10.1). Abramowitz and Stegun (1964) also includes other tables to assist the computation of the Weierstrass functions, for example, the generators as functions of the lattice invariants g 2 and g 3 . For earlier tables related to Weierstrass functions see Fletcher et al. (1962, pp. 503–505) and Lebedev and Fedorova (1960, pp. 223–226).
13: 23.1 Special Notation
𝕃 lattice in .
= e i π τ nome.
Δ discriminant g 2 3 27 g 3 2 .
The main functions treated in this chapter are the Weierstrass -function ( z ) = ( z | 𝕃 ) = ( z ; g 2 , g 3 ) ; the Weierstrass zeta function ζ ( z ) = ζ ( z | 𝕃 ) = ζ ( z ; g 2 , g 3 ) ; the Weierstrass sigma function σ ( z ) = σ ( z | 𝕃 ) = σ ( z ; g 2 , g 3 ) ; the elliptic modular function λ ( τ ) ; Klein’s complete invariant J ( τ ) ; Dedekind’s eta function η ( τ ) . …
14: William P. Reinhardt
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    15: 23.6 Relations to Other Functions
    §23.6(i) Theta Functions
    §23.6(ii) Jacobian Elliptic Functions
    §23.6(iii) General Elliptic Functions
    §23.6(iv) Elliptic Integrals
    16: 23.5 Special Lattices
    §23.5(ii) Rectangular Lattice
    In this case the lattice roots e 1 , e 2 , and e 3 are real and distinct. …
    §23.5(iii) Lemniscatic Lattice
    §23.5(iv) Rhombic Lattice
    §23.5(v) Equianharmonic Lattice
    17: 23.11 Integral Representations
    §23.11 Integral Representations
    23.11.2 ( z ) = 1 z 2 + 8 0 s ( e s sinh 2 ( 1 2 z s ) f 1 ( s , τ ) + e i τ s sin 2 ( 1 2 z s ) f 2 ( s , τ ) ) d s ,
    23.11.3 ζ ( z ) = 1 z + 0 ( e s ( z s sinh ( z s ) ) f 1 ( s , τ ) e i τ s ( z s sin ( z s ) ) f 2 ( s , τ ) ) d s ,
    18: 23.19 Interrelations
    23.19.3 J ( τ ) = g 2 3 g 2 3 27 g 3 2 ,
    where g 2 , g 3 are the invariants of the lattice 𝕃 with generators 1 and τ ; see §23.3(i). …
    19: 23.12 Asymptotic Approximations
    §23.12 Asymptotic Approximations
    23.12.2 ζ ( z ) = π 2 4 ω 1 2 ( z 3 + 2 ω 1 π cot ( π z 2 ω 1 ) 8 ( z ω 1 π sin ( π z ω 1 ) ) q 2 + O ( q 4 ) ) ,
    23.12.3 σ ( z ) = 2 ω 1 π exp ( π 2 z 2 24 ω 1 2 ) sin ( π z 2 ω 1 ) ( 1 ( π 2 z 2 ω 1 2 4 sin 2 ( π z 2 ω 1 ) ) q 2 + O ( q 4 ) ) ,
    20: 23.8 Trigonometric Series and Products
    §23.8(i) Fourier Series
    §23.8(ii) Series of Cosecants and Cotangents
    where in (23.8.4) the terms in n and n are to be bracketed together (the Eisenstein convention or principal value: see Weil (1999, p. 6) or Walker (1996, p. 3)). …
    §23.8(iii) Infinite Products