About the Project

Weber%E2%80%93Schafheitlin%20discontinuous%20integrals

AdvancedHelp

(0.004 seconds)

11—20 of 508 matching pages

11: 10.15 Derivatives with Respect to Order
β–Ί
10.15.4 Y Ξ½ ⁑ ( z ) Ξ½ | Ξ½ = n = Ο€ 2 ⁒ J n ⁑ ( z ) + n ! 2 ⁒ ( 1 2 ⁒ z ) n ⁒ k = 0 n 1 ( 1 2 ⁒ z ) k ⁒ Y k ⁑ ( z ) k ! ⁒ ( n k ) ,
β–Ί
10.15.5 J Ξ½ ⁑ ( z ) Ξ½ | Ξ½ = 0 = Ο€ 2 ⁒ Y 0 ⁑ ( z ) , Y Ξ½ ⁑ ( z ) Ξ½ | Ξ½ = 0 = Ο€ 2 ⁒ J 0 ⁑ ( z ) .
β–ΊFor the notations Ci and Si see §6.2(ii). … β–Ί
10.15.8 Y Ξ½ ⁑ ( x ) Ξ½ | Ξ½ = 1 2 = 2 Ο€ ⁒ x ⁒ ( Ci ⁑ ( 2 ⁒ x ) ⁒ cos ⁑ x + ( Si ⁑ ( 2 ⁒ x ) Ο€ ) ⁒ sin ⁑ x ) ,
β–Ί
10.15.9 Y Ξ½ ⁑ ( x ) Ξ½ | Ξ½ = 1 2 = 2 Ο€ ⁒ x ⁒ ( Ci ⁑ ( 2 ⁒ x ) ⁒ sin ⁑ x ( Si ⁑ ( 2 ⁒ x ) Ο€ ) ⁒ cos ⁑ x ) .
12: 11.15 Approximations
β–Ί
  • Luke (1975, pp. 416–421) gives Chebyshev-series expansions for 𝐇 n ⁑ ( x ) , 𝐋 n ⁑ ( x ) , 0 | x | 8 , and 𝐇 n ⁑ ( x ) Y n ⁑ ( x ) , x 8 , for n = 0 , 1 ; 0 x t m ⁒ 𝐇 0 ⁑ ( t ) ⁒ d t , 0 x t m ⁒ 𝐋 0 ⁑ ( t ) ⁒ d t , 0 | x | 8 , m = 0 , 1 and 0 x ( 𝐇 0 ⁑ ( t ) Y 0 ⁑ ( t ) ) ⁒ d t , x t 1 ⁒ ( 𝐇 0 ⁑ ( t ) Y 0 ⁑ ( t ) ) ⁒ d t , x 8 ; the coefficients are to 20D.

  • β–Ί
  • Newman (1984) gives polynomial approximations for 𝐇 n ⁑ ( x ) for n = 0 , 1 , 0 x 3 , and rational-fraction approximations for 𝐇 n ⁑ ( x ) Y n ⁑ ( x ) for n = 0 , 1 , x 3 . The maximum errors do not exceed 1.2×10⁻⁸ for the former and 2.5×10⁻⁸ for the latter.

  • 13: 10.2 Definitions
    β–Ί
    Bessel Function of the Second Kind (Weber’s Function)
    β–ΊWhether or not Ξ½ is an integer Y Ξ½ ⁑ ( z ) has a branch point at z = 0 . … β–ΊExcept in the case of J ± n ⁑ ( z ) , the principal branches of J Ξ½ ⁑ ( z ) and Y Ξ½ ⁑ ( z ) are two-valued and discontinuous on the cut ph ⁑ z = ± Ο€ ; compare §4.2(i). β–ΊBoth J Ξ½ ⁑ ( z ) and Y Ξ½ ⁑ ( z ) are real when Ξ½ is real and ph ⁑ z = 0 . β–ΊFor fixed z ( 0 ) each branch of Y Ξ½ ⁑ ( z ) is entire in Ξ½ . …
    14: 11.1 Special Notation
    §11.1 Special Notation
    β–ΊFor the functions J Ξ½ ⁑ ( z ) , Y Ξ½ ⁑ ( z ) , H Ξ½ ( 1 ) ⁑ ( z ) , H Ξ½ ( 2 ) ⁑ ( z ) , I Ξ½ ⁑ ( z ) , and K Ξ½ ⁑ ( z ) see §§10.2(ii), 10.25(ii). β–ΊThe functions treated in this chapter are the Struve functions 𝐇 Ξ½ ⁑ ( z ) and 𝐊 Ξ½ ⁑ ( z ) , the modified Struve functions 𝐋 Ξ½ ⁑ ( z ) and 𝐌 Ξ½ ⁑ ( z ) , the Lommel functions s ΞΌ , Ξ½ ⁑ ( z ) and S ΞΌ , Ξ½ ⁑ ( z ) , the Anger function 𝐉 Ξ½ ⁑ ( z ) , the Weber function 𝐄 Ξ½ ⁑ ( z ) , and the associated Anger–Weber function 𝐀 Ξ½ ⁑ ( z ) .
    15: Bibliography H
    β–Ί
  • P. I. HadΕΎi (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Ε tiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • β–Ί
  • P. I. HadΕΎi (1975b) Integrals containing the Fresnel functions S ⁒ ( x ) and C ⁒ ( x ) . Bul. Akad. Ε tiince RSS Moldoven. 1975 (3), pp. 48–60, 93 (Russian).
  • β–Ί
  • P. I. HadΕΎi (1976b) Integrals that contain a probability function of complicated arguments. Bul. Akad. Ε tiince RSS Moldoven. 1976 (1), pp. 80–84, 96 (Russian).
  • β–Ί
  • D. R. Hartree (1936) Some properties and applications of the repeated integrals of the error function. Proc. Manchester Lit. Philos. Soc. 80, pp. 85–102.
  • β–Ί
  • P. Hillion (1997) Diffraction and Weber functions. SIAM J. Appl. Math. 57 (6), pp. 1702–1715.
  • 16: 6.2 Definitions and Interrelations
    β–Ί
    §6.2(i) Exponential and Logarithmic Integrals
    β–Ίβ–ΊThe logarithmic integral is defined by … β–Ί
    §6.2(ii) Sine and Cosine Integrals
    β–Ί
    17: Bibliography
    β–Ί
  • M. Abramowitz (1954) Regular and irregular Coulomb wave functions expressed in terms of Bessel-Clifford functions. J. Math. Physics 33, pp. 111–116.
  • β–Ί
  • D. E. Amos, S. L. Daniel, and M. K. Weston (1977) Algorithm 511: CDC 6600 subroutines IBESS and JBESS for Bessel functions I Ξ½ ⁒ ( x ) and J Ξ½ ⁒ ( x ) , x 0 , Ξ½ 0 . ACM Trans. Math. Software 3 (1), pp. 93–95.
  • β–Ί
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • β–Ί
  • G. B. Arfken and H. J. Weber (2005) Mathematical Methods for Physicists. 6th edition, Elsevier, Oxford.
  • β–Ί
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • 18: 10.24 Functions of Imaginary Order
    β–Ίand J ~ Ξ½ ⁑ ( x ) , Y ~ Ξ½ ⁑ ( x ) are linearly independent solutions of (10.24.1): … β–ΊIn consequence of (10.24.6), when x is large J ~ Ξ½ ⁑ ( x ) and Y ~ Ξ½ ⁑ ( x ) comprise a numerically satisfactory pair of solutions of (10.24.1); compare §2.7(iv). … β–ΊFor graphs of J ~ Ξ½ ⁑ ( x ) and Y ~ Ξ½ ⁑ ( x ) see §10.3(iii). β–ΊFor mathematical properties and applications of J ~ Ξ½ ⁑ ( x ) and Y ~ Ξ½ ⁑ ( x ) , including zeros and uniform asymptotic expansions for large Ξ½ , see Dunster (1990a). In this reference J ~ Ξ½ ⁑ ( x ) and Y ~ Ξ½ ⁑ ( x ) are denoted respectively by F i ⁒ Ξ½ ⁑ ( x ) and G i ⁒ Ξ½ ⁑ ( x ) . …
    19: 10.1 Special Notation
    β–ΊThe main functions treated in this chapter are the Bessel functions J Ξ½ ⁑ ( z ) , Y Ξ½ ⁑ ( z ) ; Hankel functions H Ξ½ ( 1 ) ⁑ ( z ) , H Ξ½ ( 2 ) ⁑ ( z ) ; modified Bessel functions I Ξ½ ⁑ ( z ) , K Ξ½ ⁑ ( z ) ; spherical Bessel functions 𝗃 n ⁑ ( z ) , 𝗒 n ⁑ ( z ) , 𝗁 n ( 1 ) ⁑ ( z ) , 𝗁 n ( 2 ) ⁑ ( z ) ; modified spherical Bessel functions 𝗂 n ( 1 ) ⁑ ( z ) , 𝗂 n ( 2 ) ⁑ ( z ) , 𝗄 n ⁑ ( z ) ; Kelvin functions ber Ξ½ ⁑ ( x ) , bei Ξ½ ⁑ ( x ) , ker Ξ½ ⁑ ( x ) , kei Ξ½ ⁑ ( x ) . … β–ΊA common alternative notation for Y Ξ½ ⁑ ( z ) is N Ξ½ ⁑ ( z ) . … β–ΊFor older notations see British Association for the Advancement of Science (1937, pp. xix–xx) and Watson (1944, Chapters 1–3).
    20: 10.58 Zeros
    β–Ί
    b n , m = y n + 1 2 , m ,
    β–Ί
    𝗒 n ⁑ ( b n , m ) = Ο€ 2 ⁒ y n + 1 2 , m ⁒ Y n + 1 2 ⁑ ( y n + 1 2 , m ) .