About the Project

Watson expansions

AdvancedHelp

(0.002 seconds)

21—30 of 41 matching pages

21: 5.17 Barnes’ G -Function (Double Gamma Function)
When z in | ph z | π δ ( < π ) ,
5.17.5 Ln G ( z + 1 ) 1 4 z 2 + z Ln Γ ( z + 1 ) ( 1 2 z ( z + 1 ) + 1 12 ) ln z ln A + k = 1 B 2 k + 2 2 k ( 2 k + 1 ) ( 2 k + 2 ) z 2 k .
22: 10.31 Power Series
When ν is not an integer the corresponding expansion for K ν ( z ) is obtained from (10.25.2) and (10.27.4). …
23: 6.12 Asymptotic Expansions
§6.12 Asymptotic Expansions
§6.12(i) Exponential and Logarithmic Integrals
For the function χ see §9.7(i). …
§6.12(ii) Sine and Cosine Integrals
24: 7.12 Asymptotic Expansions
§7.12 Asymptotic Expansions
§7.12(i) Complementary Error Function
§7.12(ii) Fresnel Integrals
For exponentially-improved expansions use (7.5.7), (7.5.10), and §7.12(i).
§7.12(iii) Goodwin–Staton Integral
25: 10.18 Modulus and Phase Functions
§10.18(iii) Asymptotic Expansions for Large Argument
10.18.19 N ν 2 ( x ) 2 π x ( 1 1 2 μ 3 ( 2 x ) 2 1 2 4 ( μ 1 ) ( μ 45 ) ( 2 x ) 4 ) ,
the general term in this expansion being …
10.18.21 ϕ ν ( x ) x ( 1 2 ν 1 4 ) π + μ + 3 2 ( 4 x ) + μ 2 + 46 μ 63 6 ( 4 x ) 3 + μ 3 + 185 μ 2 2053 μ + 1899 5 ( 4 x ) 5 + .
In (10.18.17) and (10.18.18) the remainder after n terms does not exceed the ( n + 1 ) th term in absolute value and is of the same sign, provided that n > ν 1 2 for (10.18.17) and 3 2 ν 3 2 for (10.18.18).
26: 2.11 Remainder Terms; Stokes Phenomenon
Application of Watson’s lemma (§2.4(i)) yields …
§2.11(iii) Exponentially-Improved Expansions
In this way we arrive at hyperasymptotic expansions. …
27: 10.8 Power Series
When ν is not an integer the corresponding expansions for Y ν ( z ) , H ν ( 1 ) ( z ) , and H ν ( 2 ) ( z ) are obtained by combining (10.2.2) with (10.2.3), (10.4.7), and (10.4.8). …
28: 10.43 Integrals
For further properties of the Bickley function, including asymptotic expansions and generalizations, see Amos (1983c, 1989) and Luke (1962, Chapter 8). … For asymptotic expansions of the direct transform (10.43.30) see Wong (1981), and for asymptotic expansions of the inverse transform (10.43.31) see Naylor (1990, 1996). … For collections of integrals of the functions I ν ( z ) and K ν ( z ) , including integrals with respect to the order, see Apelblat (1983, §12), Erdélyi et al. (1953b, §§7.7.1–7.7.7 and 7.14–7.14.2), Erdélyi et al. (1954a, b), Gradshteyn and Ryzhik (2000, §§5.5, 6.5–6.7), Gröbner and Hofreiter (1950, pp. 197–203), Luke (1962), Magnus et al. (1966, §3.8), Marichev (1983, pp. 191–216), Oberhettinger (1972), Oberhettinger (1974, §§1.11 and 2.7), Oberhettinger (1990, §§1.17–1.20 and 2.17–2.20), Oberhettinger and Badii (1973, §§1.15 and 2.13), Okui (1974, 1975), Prudnikov et al. (1986b, §§1.11–1.12, 2.15–2.16, 3.2.8–3.2.10, and 3.4.1), Prudnikov et al. (1992a, §§3.15, 3.16), Prudnikov et al. (1992b, §§3.15, 3.16), Watson (1944, Chapter 13), and Wheelon (1968).
29: 20.2 Definitions and Periodic Properties
Corresponding expansions for θ j ( z | τ ) , j = 1 , 2 , 3 , 4 , can be found by differentiating (20.2.1)–(20.2.4) with respect to z . …
30: Bibliography W
  • G. N. Watson (1910) The cubic transformation of the hypergeometric function. Quart. J. Pure and Applied Math. 41, pp. 70–79.
  • G. N. Watson (1935a) Generating functions of class-numbers. Compositio Math. 1, pp. 39–68.
  • G. N. Watson (1935b) The surface of an ellipsoid. Quart. J. Math., Oxford Ser. 6, pp. 280–287.
  • G. N. Watson (1937) Two tables of partitions. Proc. London Math. Soc. (2) 42, pp. 550–556.
  • G. N. Watson (1949) A table of Ramanujan’s function τ ( n ) . Proc. London Math. Soc. (2) 51, pp. 1–13.