Struve functions
(0.002 seconds)
1—10 of 26 matching pages
1: 11.12 Physical Applications
§11.12 Physical Applications
►Applications of Struve functions occur in water-wave and surface-wave problems (Hirata (1975) and Ahmadi and Widnall (1985)), unsteady aerodynamics (Shaw (1985) and Wehausen and Laitone (1960)), distribution of fluid pressure over a vibrating disk (McLachlan (1934)), resistive MHD instability theory (Paris and Sy (1983)), and optical diffraction (Levine and Schwinger (1948)). More recently Struve functions have appeared in many particle quantum dynamical studies of spin decoherence (Shao and Hänggi (1998)) and nanotubes (Pedersen (2003)).2: 11.8 Analogs to Kelvin Functions
§11.8 Analogs to Kelvin Functions
►For properties of Struve functions of argument see McLachlan and Meyers (1936).3: 11.3 Graphics
4: 11.1 Special Notation
§11.1 Special Notation
… ►For the functions , , , , , and see §§10.2(ii), 10.25(ii). ►The functions treated in this chapter are the Struve functions and , the modified Struve functions and , the Lommel functions and , the Anger function , the Weber function , and the associated Anger–Weber function .5: 11.7 Integrals and Sums
…
►
§11.7(i) Indefinite Integrals
… ►§11.7(ii) Definite Integrals
… ► ►§11.7(iii) Laplace Transforms
… ►§11.7(v) Compendia
…6: 11.14 Tables
…
►
•
§11.14(ii) Struve Functions
… ►§11.14(iii) Integrals
… ►§11.14(v) Incomplete Functions
►Agrest and Maksimov (1971, Chapter 11) defines incomplete Struve, Anger, and Weber functions and includes tables of an incomplete Struve function for , , and , together with surface plots.
7: 11.2 Definitions
§11.2 Definitions
►§11.2(i) Power-Series Expansions
… ► … ►Particular solutions: … ►Particular solutions: …8: 11.4 Basic Properties
…
►
§11.4(i) Half-Integer Orders
… ►§11.4(ii) Inequalities
… ►§11.4(iv) Expansions in Series of Bessel Functions
… ►§11.4(v) Recurrence Relations and Derivatives
… ►§11.4(vii) Zeros
…9: 11.15 Approximations
…
►