About the Project

Stieltjes%20constants

AdvancedHelp

(0.002 seconds)

1—10 of 502 matching pages

1: 31.15 Stieltjes Polynomials
§31.15 Stieltjes Polynomials
§31.15(ii) Zeros
This is the Stieltjes electrostatic interpretation. …
§31.15(iii) Products of Stieltjes Polynomials
2: 18.40 Methods of Computation
§18.40(ii) The Classical Moment Problem
Having now directly connected computation of the quadrature abscissas and weights to the moments, what follows uses these for a Stieltjes–Perron inversion to regain w ( x ) .
Stieltjes Inversion via (approximate) Analytic Continuation
Histogram Approach
Derivative Rule Approach
3: 25.2 Definition and Expansions
25.2.4 ζ ( s ) = 1 s 1 + n = 0 ( 1 ) n n ! γ n ( s 1 ) n ,
where the Stieltjes constants γ n are defined via
25.2.5 γ n = lim m ( k = 1 m ( ln k ) n k ( ln m ) n + 1 n + 1 ) .
25.2.12 ζ ( s ) = ( 2 π ) s e s ( γ s / 2 ) 2 ( s 1 ) Γ ( 1 2 s + 1 ) ρ ( 1 s ρ ) e s / ρ ,
product over zeros ρ of ζ with ρ > 0 (see §25.10(i)); γ is Euler’s constant5.2(ii)).
4: 2.6 Distributional Methods
§2.6(ii) Stieltjes Transform
The Stieltjes transform of f ( t ) is defined by … For a more detailed discussion of the derivation of asymptotic expansions of Stieltjes transforms by the distribution method, see McClure and Wong (1978) and Wong (1989, Chapter 6). Corresponding results for the generalized Stieltjes transform …An application has been given by López (2000) to derive asymptotic expansions of standard symmetric elliptic integrals, complete with error bounds; see §19.27(vi). …
5: 25.6 Integer Arguments
25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
25.6.12 ζ ′′ ( 0 ) = 1 2 ( ln ( 2 π ) ) 2 + 1 2 γ 2 1 24 π 2 + γ 1 ,
where γ 1 is given by (25.2.5). …
25.6.13 ( 1 ) k ζ ( k ) ( 2 n ) = 2 ( 1 ) n ( 2 π ) 2 n + 1 m = 0 k r = 0 m ( k m ) ( m r ) ( c k m ) Γ ( r ) ( 2 n + 1 ) ζ ( m r ) ( 2 n + 1 ) ,
25.6.14 ( 1 ) k ζ ( k ) ( 1 2 n ) = 2 ( 1 ) n ( 2 π ) 2 n m = 0 k r = 0 m ( k m ) ( m r ) ( c k m ) Γ ( r ) ( 2 n ) ζ ( m r ) ( 2 n ) ,
6: 1.4 Calculus of One Variable
Stieltjes, Lebesgue, and Lebesgue–Stieltjes integrals
See Riesz and Sz.-Nagy (1990, Ch. 3). …
7: 1.14 Integral Transforms
§1.14(vi) Stieltjes Transform
The Stieltjes transform of a real-valued function f ( t ) is defined by … …
Inversion
Laplace Transform
8: Bibliography R
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • W. P. Reinhardt (2018) Universality properties of Gaussian quadrature, the derivative rule, and a novel approach to Stieltjes inversion.
  • W. P. Reinhardt (2021a) Erratum to:Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (4), pp. 91.
  • W. P. Reinhardt (2021b) Relationships between the zeros, weights, and weight functions of orthogonal polynomials: Derivative rule approach to Stieltjes and spectral imaging. Computing in Science and Engineering 23 (3), pp. 56–64.
  • C. H. Rowe (1931) A proof of the asymptotic series for log Γ ( z ) and log Γ ( z + a ) . Ann. of Math. (2) 32 (1), pp. 10–16.
  • 9: Bibliography
  • M. J. Ablowitz and H. Segur (1977) Exact linearization of a Painlevé transcendent. Phys. Rev. Lett. 38 (20), pp. 1103–1106.
  • A. Adelberg (1992) On the degrees of irreducible factors of higher order Bernoulli polynomials. Acta Arith. 62 (4), pp. 329–342.
  • A. M. Al-Rashed and N. Zaheer (1985) Zeros of Stieltjes and Van Vleck polynomials and applications. J. Math. Anal. Appl. 110 (2), pp. 327–339.
  • M. Alam (1979) Zeros of Stieltjes and Van Vleck polynomials. Trans. Amer. Math. Soc. 252, pp. 197–204.
  • D. E. Amos (1989) Repeated integrals and derivatives of K Bessel functions. SIAM J. Math. Anal. 20 (1), pp. 169–175.
  • 10: 18.27 q -Hahn Class
    §18.27(vi) Stieltjes–Wigert Polynomials
    18.27.20 0 S n ( q 1 2 x ; q ) S m ( q 1 2 x ; q ) exp ( ( ln x ) 2 2 ln ( q 1 ) ) d x = 2 π q 1 ln ( q 1 ) q n ( q ; q ) n δ n , m .
    From Stieltjes–Wigert to Hermite
    18.27.20_5 lim q 1 ( q ; q ) n S n ( q 1 x 2 ( 1 q ) + 1 ; q ) ( 1 q 2 ) n / 2 = ( 1 ) n H n ( x ) .