About the Project

SL(2,Z)

AdvancedHelp

(0.003 seconds)

41—50 of 803 matching pages

41: 30.3 Eigenvalues
β–ΊWith ΞΌ = m = 0 , 1 , 2 , , the spheroidal wave functions π–―π—Œ n m ⁑ ( x , Ξ³ 2 ) are solutions of Equation (30.2.1) which are bounded on ( 1 , 1 ) , or equivalently, which are of the form ( 1 x 2 ) 1 2 ⁒ m ⁒ g ⁑ ( x ) where g ⁑ ( z ) is an entire function of z . These solutions exist only for eigenvalues Ξ» n m ⁑ ( Ξ³ 2 ) , n = m , m + 1 , m + 2 , , of the parameter Ξ» . … β–ΊThe eigenvalues Ξ» n m ⁑ ( Ξ³ 2 ) are analytic functions of the real variable Ξ³ 2 and satisfy … β–Ίhas the solutions Ξ» = Ξ» m + 2 ⁒ j m ⁑ ( Ξ³ 2 ) , j = 0 , 1 , 2 , . If p is an odd positive integer, then Equation (30.3.5) has the solutions Ξ» = Ξ» m + 2 ⁒ j + 1 m ⁑ ( Ξ³ 2 ) , j = 0 , 1 , 2 , . …
42: 29.6 Fourier Series
β–Ί
§29.6(i) Function 𝐸𝑐 Ξ½ 2 ⁒ m ⁑ ( z , k 2 )
β–ΊIn the special case Ξ½ = 2 ⁒ n , m = 0 , 1 , , n , there is a unique nontrivial solution with the property A 2 ⁒ p = 0 , p = n + 1 , n + 2 , . … β–Ί
§29.6(ii) Function 𝐸𝑐 Ξ½ 2 ⁒ m + 1 ⁑ ( z , k 2 )
β–Ί
§29.6(iii) Function 𝐸𝑠 Ξ½ 2 ⁒ m + 1 ⁑ ( z , k 2 )
β–Ί
§29.6(iv) Function 𝐸𝑠 Ξ½ 2 ⁒ m + 2 ⁑ ( z , k 2 )
43: 29.12 Definitions
β–ΊThe Lamé functions 𝐸𝑐 Ξ½ m ⁑ ( z , k 2 ) , m = 0 , 1 , , Ξ½ , and 𝐸𝑠 Ξ½ m ⁑ ( z , k 2 ) , m = 1 , 2 , , Ξ½ , are called the Lamé polynomials. …where n = 0 , 1 , 2 , , m = 0 , 1 , 2 , , n . … β–Ίwhere ρ , Οƒ , Ο„ are either 0 or 1 2 . The polynomial P ⁑ ( ΞΎ ) is of degree n and has m zeros (all simple) in ( 0 , 1 ) and n m zeros (all simple) in ( 1 , k 2 ) . … β–Ίdefined for ( t 1 , t 2 , , t n ) with …
44: 34.3 Basic Properties: 3 ⁒ j Symbol
β–ΊWhen any one of j 1 , j 2 , j 3 is equal to 0 , 1 2 , or 1 , the 3 ⁒ j symbol has a simple algebraic form. …For these and other results, and also cases in which any one of j 1 , j 2 , j 3 is 3 2 or 2 , see Edmonds (1974, pp. 125–127). … β–ΊEven permutations of columns of a 3 ⁒ j symbol leave it unchanged; odd permutations of columns produce a phase factor ( 1 ) j 1 + j 2 + j 3 , for example, … β–Ί
34.3.13 ( ( j 1 + j 2 + j 3 + 1 ) ⁒ ( j 1 + j 2 + j 3 ) ) 1 2 ⁒ ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( ( j 2 + m 2 ) ⁒ ( j 3 m 3 ) ) 1 2 ⁒ ( j 1 j 2 1 2 j 3 1 2 m 1 m 2 1 2 m 3 + 1 2 ) ( ( j 2 m 2 ) ⁒ ( j 3 + m 3 ) ) 1 2 ⁒ ( j 1 j 2 1 2 j 3 1 2 m 1 m 2 + 1 2 m 3 1 2 ) ,
β–Ί
34.3.15 ( 2 ⁒ j 1 + 1 ) ⁒ ( ( j 2 ⁒ ( j 2 + 1 ) j 3 ⁒ ( j 3 + 1 ) ) ⁒ m 1 j 1 ⁒ ( j 1 + 1 ) ⁒ ( m 3 m 2 ) ) ⁒ ( j 1 j 2 j 3 m 1 m 2 m 3 ) = ( j 1 + 1 ) ⁒ ( j 1 2 ( j 2 j 3 ) 2 ) 1 2 ⁒ ( ( j 2 + j 3 + 1 ) 2 j 1 2 ) 1 2 ⁒ ( j 1 2 m 1 2 ) 1 2 ⁒ ( j 1 1 j 2 j 3 m 1 m 2 m 3 ) + j 1 ⁒ ( ( j 1 + 1 ) 2 ( j 2 j 3 ) 2 ) 1 2 ⁒ ( ( j 2 + j 3 + 1 ) 2 ( j 1 + 1 ) 2 ) 1 2 ⁒ ( ( j 1 + 1 ) 2 m 1 2 ) 1 2 ⁒ ( j 1 + 1 j 2 j 3 m 1 m 2 m 3 ) .
45: 28.14 Fourier Series
β–ΊThe coefficients satisfy β–Ί
28.14.4 q ⁒ c 2 ⁒ m + 2 ( a ( ν + 2 ⁒ m ) 2 ) ⁒ c 2 ⁒ m + q ⁒ c 2 ⁒ m 2 = 0 , a = λ ν ⁑ ( q ) , c 2 ⁒ m = c 2 ⁒ m ν ⁑ ( q ) ,
β–Ί
28.14.5 m = ( c 2 ⁒ m ν ⁑ ( q ) ) 2 = 1 ;
β–Ί
28.14.7 c 2 ⁒ m ν ⁑ ( q ) = c 2 ⁒ m ν ⁑ ( q ) ,
β–Ί
28.14.8 c 2 ⁒ m ν ⁑ ( q ) = ( 1 ) m ⁒ c 2 ⁒ m ν ⁑ ( q ) .
46: 30.16 Methods of Computation
β–Ίand real eigenvalues Ξ± 1 , d , Ξ± 2 , d , , Ξ± d , d , arranged in ascending order of magnitude. … β–ΊFor m = 2 , n = 4 , Ξ³ 2 = 10 , …which yields Ξ» 4 2 ⁑ ( 10 ) = 13.97907 345 . … β–ΊIf Ξ» n m ⁑ ( Ξ³ 2 ) is known, then π–―π—Œ n m ⁑ ( x , Ξ³ 2 ) can be found by summing (30.8.1). The coefficients a n , r m ⁑ ( Ξ³ 2 ) are computed as the recessive solution of (30.8.4) (§3.6), and normalized via (30.8.5). …
47: 28.4 Fourier Series
β–ΊFor n = 0 , 1 , 2 , 3 , , … β–Ί
( a 4 ⁒ m 2 ) ⁒ B 2 ⁒ m q ⁒ ( B 2 ⁒ m 2 + B 2 ⁒ m + 2 ) = 0 , m = 2 , 3 , 4 , , a = b 2 ⁒ n + 2 ⁑ ( q ) , B 2 ⁒ m + 2 = B 2 ⁒ m + 2 2 ⁒ n + 2 ⁑ ( q ) .
β–Ί
B 2 ⁒ n + 2 2 ⁒ n + 2 ⁑ ( 0 ) = 1 ,
β–Ί
B 2 ⁒ m + 2 2 ⁒ n + 2 ⁑ ( 0 ) = 0 , n m .
β–ΊFor fixed s = 1 , 2 , 3 , and fixed m = 1 , 2 , 3 , , …
48: 19.3 Graphics
β–Ί
β–Ί
See accompanying text
β–Ί
Figure 19.3.5: Ξ  ⁑ ( Ξ± 2 , k ) as a function of k 2 and Ξ± 2 for 2 k 2 < 1 , 2 Ξ± 2 2 . … Magnify 3D Help
β–Ί
β–Ί
See accompanying text
β–Ί
Figure 19.3.6: Ξ  ⁑ ( Ο• , 2 , k ) as a function of k 2 and sin 2 ⁑ Ο• for 1 k 2 3 , 0 sin 2 ⁑ Ο• < 1 . Cauchy principal values are shown when sin 2 ⁑ Ο• > 1 2 . … Magnify 3D Help
β–Ί
β–Ί
See accompanying text
β–Ί
Figure 19.3.7: K ⁑ ( k ) as a function of complex k 2 for 2 ⁑ ( k 2 ) 2 , 2 ⁑ ( k 2 ) 2 . … Magnify 3D Help
β–Ί
β–Ί
See accompanying text
β–Ί
Figure 19.3.8: E ⁑ ( k ) as a function of complex k 2 for 2 ⁑ ( k 2 ) 2 , 2 ⁑ ( k 2 ) 2 . … Magnify 3D Help
β–Ί
β–Ί
See accompanying text
β–Ί
Figure 19.3.9: ⁑ ( K ⁑ ( k ) ) as a function of complex k 2 for 2 ⁑ ( k 2 ) 2 , 2 ⁑ ( k 2 ) 2 . … Magnify 3D Help
49: 10.53 Power Series
β–Ί
10.53.1 𝗃 n ⁑ ( z ) = z n ⁒ k = 0 ( 1 2 ⁒ z 2 ) k k ! ⁒ ( 2 ⁒ n + 2 ⁒ k + 1 ) !! ,
β–Ί
10.53.2 𝗒 n ⁑ ( z ) = 1 z n + 1 ⁒ k = 0 n ( 2 ⁒ n 2 ⁒ k 1 ) !! ⁒ ( 1 2 ⁒ z 2 ) k k ! + ( 1 ) n + 1 z n + 1 ⁒ k = n + 1 ( 1 2 ⁒ z 2 ) k k ! ⁒ ( 2 ⁒ k 2 ⁒ n 1 ) !! .
β–Ί
10.53.3 𝗂 n ( 1 ) ⁑ ( z ) = z n ⁒ k = 0 ( 1 2 ⁒ z 2 ) k k ! ⁒ ( 2 ⁒ n + 2 ⁒ k + 1 ) !! ,
β–Ί
10.53.4 𝗂 n ( 2 ) ⁑ ( z ) = ( 1 ) n z n + 1 ⁒ k = 0 n ( 2 ⁒ n 2 ⁒ k 1 ) !! ⁒ ( 1 2 ⁒ z 2 ) k k ! + 1 z n + 1 ⁒ k = n + 1 ( 1 2 ⁒ z 2 ) k k ! ⁒ ( 2 ⁒ k 2 ⁒ n 1 ) !! .
β–ΊFor 𝗁 n ( 1 ) ⁑ ( z ) and 𝗁 n ( 2 ) ⁑ ( z ) combine (10.47.10), (10.53.1), and (10.53.2). …
50: 28.16 Asymptotic Expansions for Large q
β–ΊLet s = 2 ⁒ m + 1 , m = 0 , 1 , 2 , , and Ξ½ be fixed with m < Ξ½ < m + 1 . … β–Ί
28.16.1 Ξ» Ξ½ ⁑ ( h 2 ) 2 ⁒ h 2 + 2 ⁒ s ⁒ h 1 8 ⁒ ( s 2 + 1 ) 1 2 7 ⁒ h ⁒ ( s 3 + 3 ⁒ s ) 1 2 12 ⁒ h 2 ⁒ ( 5 ⁒ s 4 + 34 ⁒ s 2 + 9 ) 1 2 17 ⁒ h 3 ⁒ ( 33 ⁒ s 5 + 410 ⁒ s 3 + 405 ⁒ s ) 1 2 20 ⁒ h 4 ⁒ ( 63 ⁒ s 6 + 1260 ⁒ s 4 + 2943 ⁒ s 2 + 486 ) 1 2 25 ⁒ h 5 ⁒ ( 527 ⁒ s 7 + 15617 ⁒ s 5 + 69001 ⁒ s 3 + 41607 ⁒ s ) + β‹― .