About the Project

SL(2,Z)

AdvancedHelp

(0.002 seconds)

11—20 of 803 matching pages

11: 10.44 Sums
β–Ί
10.44.1 𝒡 Ξ½ ⁑ ( Ξ» ⁒ z ) = Ξ» ± Ξ½ ⁒ k = 0 ( Ξ» 2 1 ) k ⁒ ( 1 2 ⁒ z ) k k ! ⁒ 𝒡 Ξ½ ± k ⁑ ( z ) , | Ξ» 2 1 | < 1 .
β–ΊIf 𝒡 = I and the upper signs are taken, then the restriction on Ξ» is unnecessary. … β–Ί
10.44.3 𝒡 Ξ½ ⁑ ( u ± v ) = k = ( ± 1 ) k ⁒ 𝒡 Ξ½ + k ⁑ ( u ) ⁒ I k ⁑ ( v ) , | v | < | u | .
β–ΊThe restriction | v | < | u | is unnecessary when 𝒡 = I and Ξ½ is an integer. … β–Ί
10.44.6 K n ⁑ ( z ) = n ! ⁒ ( 1 2 ⁒ z ) n 2 ⁒ k = 0 n 1 ( 1 ) k ⁒ ( 1 2 ⁒ z ) k ⁒ I k ⁑ ( z ) k ! ⁒ ( n k ) + ( 1 ) n 1 ⁒ ( ln ⁑ ( 1 2 ⁒ z ) ψ ⁑ ( n + 1 ) ) ⁒ I n ⁑ ( z ) + ( 1 ) n ⁒ k = 1 ( n + 2 ⁒ k ) ⁒ I n + 2 ⁒ k ⁑ ( z ) k ⁒ ( n + k ) ,
12: 18.39 Applications in the Physical Sciences
β–ΊThis is also the normalization and notation of Chapter 33 for Z = 1 , and the notation of Weinberg (2013, Chapter 2). … β–ΊThus the c N ⁒ ( x ) = P N ( l + 1 ) ⁑ ( x ; 2 ⁒ Z s , 2 ⁒ Z s ) and the eigenvalues …are determined by the N zeros, x i N of the Pollaczek polynomial P N ( l + 1 ) ⁑ ( x ; 2 ⁒ Z s , 2 ⁒ Z s ) . … β–ΊThe polynomials P N ( l + 1 ) ⁑ ( x ; 2 ⁒ Z s , 2 ⁒ Z s ) , for both positive and negative Z , define the Coulomb–Pollaczek polynomials (CP OP’s in what follows), see Yamani and Reinhardt (1975, Appendix B, and §IV). … β–ΊNote that violation of the Favard inequality, l + 1 + ( 2 ⁒ Z / s ) > 0 , possible when Z < 0 , results in a zero or negative weight function. …
13: 19.19 Taylor and Related Series
β–ΊFor N = 0 , 1 , 2 , define the homogeneous hypergeometric polynomial … β–ΊIf n = 2 , then (19.19.3) is a Gauss hypergeometric series (see (19.25.43) and (15.2.1)). … β–Ίand define the n -tuple 𝟏 𝟐 = ( 1 2 , , 1 2 ) . … β–ΊThe number of terms in T N can be greatly reduced by using variables 𝐙 = 𝟏 ( 𝐳 / A ) with A chosen to make E 1 ⁑ ( 𝐙 ) = 0 . … β–Ί
19.19.7 R a ⁑ ( 𝟏 𝟐 ; 𝐳 ) = A a ⁒ N = 0 ( a ) N ( 1 2 ⁒ n ) N ⁒ T N ⁑ ( 𝟏 𝟐 , 𝐙 ) ,
14: 22.16 Related Functions
β–ΊWith q as in (22.2.1) and ΞΆ = Ο€ ⁒ x / ( 2 ⁒ K ⁑ ) , … β–ΊIn Equations (22.16.24)–(22.16.26), 2 ⁒ K ⁑ < x < 2 ⁒ K ⁑ . … β–Ίwhere ΞΎ = x / ΞΈ 3 2 ⁑ ( 0 , q ) . … β–Ί(Sometimes in the literature Z ⁑ ( x | k ) is denoted by Z ⁑ ( am ⁑ ( x , k ) , k 2 ) .) … β–Ί Z ⁑ ( x | k ) satisfies the same quasi-addition formula as the function β„° ⁑ ( x , k ) , given by (22.16.27). …
15: 10.43 Integrals
β–ΊLet 𝒡 Ξ½ ⁑ ( z ) be defined as in §10.25(ii). … β–Ί
z Ξ½ + 1 ⁒ 𝒡 Ξ½ ⁑ ( z ) ⁒ d z = z Ξ½ + 1 ⁒ 𝒡 Ξ½ + 1 ⁑ ( z ) ,
β–Ί
10.43.2 z Ξ½ ⁒ 𝒡 Ξ½ ⁑ ( z ) ⁒ d z = Ο€ 1 2 ⁒ 2 Ξ½ 1 ⁒ Ξ“ ⁑ ( Ξ½ + 1 2 ) ⁒ z ⁒ ( 𝒡 Ξ½ ⁑ ( z ) ⁒ 𝐋 Ξ½ 1 ⁑ ( z ) 𝒡 Ξ½ 1 ⁑ ( z ) ⁒ 𝐋 Ξ½ ⁑ ( z ) ) , Ξ½ 1 2 .
β–Ί
e ± z ⁒ z Ξ½ ⁒ 𝒡 Ξ½ ⁑ ( z ) ⁒ d z = e ± z ⁒ z Ξ½ + 1 2 ⁒ Ξ½ + 1 ⁒ ( 𝒡 Ξ½ ⁑ ( z ) βˆ“ 𝒡 Ξ½ + 1 ⁑ ( z ) ) , Ξ½ 1 2 ,
β–Ί
e ± z ⁒ z Ξ½ ⁒ 𝒡 Ξ½ ⁑ ( z ) ⁒ d z = e ± z ⁒ z Ξ½ + 1 1 2 ⁒ Ξ½ ⁒ ( 𝒡 Ξ½ ⁑ ( z ) βˆ“ 𝒡 Ξ½ 1 ⁑ ( z ) ) , Ξ½ 1 2 .
16: 10.25 Definitions
β–Ί
10.25.1 z 2 ⁒ d 2 w d z 2 + z ⁒ d w d z ( z 2 + ν 2 ) ⁒ w = 0 .
β–ΊIn particular, the principal branch of I Ξ½ ⁑ ( z ) is defined in a similar way: it corresponds to the principal value of ( 1 2 ⁒ z ) Ξ½ , is analytic in β„‚ βˆ– ( , 0 ] , and two-valued and discontinuous on the cut ph ⁑ z = ± Ο€ . … β–Ίas z in | ph ⁑ z | 3 2 ⁒ Ο€ Ξ΄ ( < 3 2 ⁒ Ο€ ) . … β–Ί
Symbol 𝒡 Ξ½ ⁑ ( z )
β–ΊCorresponding to the symbol π’ž Ξ½ introduced in §10.2(ii), we sometimes use 𝒡 Ξ½ ⁑ ( z ) to denote I Ξ½ ⁑ ( z ) , e Ξ½ ⁒ Ο€ ⁒ i ⁒ K Ξ½ ⁑ ( z ) , or any nontrivial linear combination of these functions, the coefficients in which are independent of z and Ξ½ . …
17: 22.21 Tables
β–ΊCurtis (1964b) tabulates sn ⁑ ( m ⁒ K ⁑ / n , k ) , cn ⁑ ( m ⁒ K ⁑ / n , k ) , dn ⁑ ( m ⁒ K ⁑ / n , k ) for n = 2 ⁒ ( 1 ) ⁒ 15 , m = 1 ⁒ ( 1 ) ⁒ n 1 , and q (not k ) = 0 ⁒ ( .005 ) ⁒ 0.35 to 20D. β–ΊLawden (1989, pp. 280–284 and 293–297) tabulates sn ⁑ ( x , k ) , cn ⁑ ( x , k ) , dn ⁑ ( x , k ) , β„° ⁑ ( x , k ) , Z ⁑ ( x | k ) to 5D for k = 0.1 ⁒ ( .1 ) ⁒ 0.9 , x = 0 ⁒ ( .1 ) ⁒ X , where X ranges from 1. 5 to 2. 2. … β–ΊZhang and Jin (1996, p. 678) tabulates sn ⁑ ( K ⁑ ⁒ x , k ) , cn ⁑ ( K ⁑ ⁒ x , k ) , dn ⁑ ( K ⁑ ⁒ x , k ) for k = 1 4 , 1 2 and x = 0 ⁒ ( .1 ) ⁒ 4 to 7D. …
18: 35.1 Special Notation
β–Ί β–Ίβ–Ίβ–Ίβ–Ί
a , b complex variables.
𝐙 complex symmetric matrix.
Z ΞΊ ⁑ ( 𝐓 ) zonal polynomials.
β–ΊThe main functions treated in this chapter are the multivariate gamma and beta functions, respectively Ξ“ m ⁑ ( a ) and B m ⁑ ( a , b ) , and the special functions of matrix argument: Bessel (of the first kind) A Ξ½ ⁑ ( 𝐓 ) and (of the second kind) B Ξ½ ⁑ ( 𝐓 ) ; confluent hypergeometric (of the first kind) F 1 1 ⁑ ( a ; b ; 𝐓 ) or F 1 1 ⁑ ( a b ; 𝐓 ) and (of the second kind) Ξ¨ ⁑ ( a ; b ; 𝐓 ) ; Gaussian hypergeometric F 1 2 ⁑ ( a 1 , a 2 ; b ; 𝐓 ) or F 1 2 ⁑ ( a 1 , a 2 b ; 𝐓 ) ; generalized hypergeometric F q p ⁑ ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) or F q p ⁑ ( a 1 , , a p b 1 , , b q ; 𝐓 ) . β–ΊAn alternative notation for the multivariate gamma function is Ξ  m ⁑ ( a ) = Ξ“ m ⁑ ( a + 1 2 ⁒ ( m + 1 ) ) (Herz (1955, p. 480)). Related notations for the Bessel functions are π’₯ Ξ½ + 1 2 ⁒ ( m + 1 ) ⁑ ( 𝐓 ) = A Ξ½ ⁑ ( 𝐓 ) / A Ξ½ ⁑ ( 𝟎 ) (Faraut and Korányi (1994, pp. 320–329)), K m ⁑ ( 0 , , 0 , Ξ½ | 𝐒 , 𝐓 ) = | 𝐓 | Ξ½ ⁒ B Ξ½ ⁑ ( 𝐒 ⁒ 𝐓 ) (Terras (1988, pp. 49–64)), and 𝒦 Ξ½ ⁑ ( 𝐓 ) = | 𝐓 | Ξ½ ⁒ B Ξ½ ⁑ ( 𝐒 ⁒ 𝐓 ) (Faraut and Korányi (1994, pp. 357–358)).
19: 10.66 Expansions in Series of Bessel Functions
β–Ί
10.66.1 ber Ξ½ ⁑ x + i ⁒ bei Ξ½ ⁑ x = k = 0 e ( 3 ⁒ Ξ½ + k ) ⁒ Ο€ ⁒ i / 4 ⁒ x k ⁒ J Ξ½ + k ⁑ ( x ) 2 k / 2 ⁒ k ! = k = 0 e ( 3 ⁒ Ξ½ + 3 ⁒ k ) ⁒ Ο€ ⁒ i / 4 ⁒ x k ⁒ I Ξ½ + k ⁑ ( x ) 2 k / 2 ⁒ k ! .
β–Ί
ber n ⁑ ( x ⁒ 2 ) = k = ( 1 ) n + k ⁒ J n + 2 ⁒ k ⁑ ( x ) ⁒ I 2 ⁒ k ⁑ ( x ) ,
β–Ί
bei n ⁑ ( x ⁒ 2 ) = k = ( 1 ) n + k ⁒ J n + 2 ⁒ k + 1 ⁑ ( x ) ⁒ I 2 ⁒ k + 1 ⁑ ( x ) .
20: 19.36 Methods of Computation
β–Ίwhere, in the notation of (19.19.7) with a = 1 2 and n = 3 , … β–Ίwhere n = 0 , 1 , 2 , , and … β–ΊThis method loses significant figures in ρ if Ξ± 2 and k 2 are nearly equal unless they are given exact values—as they can be for tables. If Ξ± 2 = k 2 , then the method fails, but the function can be expressed by (19.6.13) in terms of E ⁑ ( Ο• , k ) , for which Neuman (1969b) uses ascending Landen transformations. … β–ΊThe cases k c 2 / 2 p < and < p < k c 2 / 2 require different treatment for numerical purposes, and again precautions are needed to avoid cancellations. …