About the Project

Riemann identity

AdvancedHelp

(0.002 seconds)

21—25 of 25 matching pages

21: 2.10 Sums and Sequences
2.10.6 C = γ + ln ( 2 π ) 12 ζ ( 2 ) 2 π 2 = 1 12 ζ ( 1 ) ,
where γ is Euler’s constant (§5.2(ii)) and ζ is the derivative of the Riemann zeta function (§25.2(i)). … This identity can be used to find asymptotic approximations for large n when the factor v j changes slowly with j , and u j is oscillatory; compare the approximation of Fourier integrals by integration by parts in §2.3(i). … From the identitiesHence by the Riemann–Lebesgue lemma (§1.8(i)) …
22: Bibliography K
  • A. A. Karatsuba and S. M. Voronin (1992) The Riemann Zeta-Function. de Gruyter Expositions in Mathematics, Vol. 5, Walter de Gruyter & Co., Berlin.
  • A. Khare, A. Lakshminarayan, and U. Sukhatme (2003) Cyclic identities for Jacobi elliptic and related functions. J. Math. Phys. 44 (4), pp. 1822–1841.
  • A. Khare and U. Sukhatme (2002) Cyclic identities involving Jacobi elliptic functions. J. Math. Phys. 43 (7), pp. 3798–3806.
  • A. N. Kirillov (1995) Dilogarithm identities. Progr. Theoret. Phys. Suppl. (118), pp. 61–142.
  • K. S. Kölbig (1972a) Complex zeros of two incomplete Riemann zeta functions. Math. Comp. 26 (118), pp. 551–565.
  • 23: Bibliography
  • G. E. Andrews (1966b) q -identities of Auluck, Carlitz, and Rogers. Duke Math. J. 33 (3), pp. 575–581.
  • G. E. Andrews (1984) Multiple series Rogers-Ramanujan type identities. Pacific J. Math. 114 (2), pp. 267–283.
  • T. M. Apostol and T. H. Vu (1984) Dirichlet series related to the Riemann zeta function. J. Number Theory 19 (1), pp. 85–102.
  • T. M. Apostol (1985a) Formulas for higher derivatives of the Riemann zeta function. Math. Comp. 44 (169), pp. 223–232.
  • J. V. Armitage (1989) The Riemann Hypothesis and the Hamiltonian of a Quantum Mechanical System. In Number Theory and Dynamical Systems (York, 1987), M. M. Dodson and J. A. G. Vickers (Eds.), London Math. Soc. Lecture Note Ser., Vol. 134, pp. 153–172.
  • 24: Bibliography L
  • J. Lepowsky and S. Milne (1978) Lie algebraic approaches to classical partition identities. Adv. in Math. 29 (1), pp. 15–59.
  • J. Lepowsky and R. L. Wilson (1982) A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities. Adv. in Math. 45 (1), pp. 21–72.
  • N. Levinson (1974) More than one third of zeros of Riemann’s zeta-function are on σ = 1 2 . Advances in Math. 13 (4), pp. 383–436.
  • X. Li, X. Shi, and J. Zhang (1991) Generalized Riemann ζ -function regularization and Casimir energy for a piecewise uniform string. Phys. Rev. D 44 (2), pp. 560–562.
  • 25: Errata
  • Equation (19.25.37)

    The Weierstrass zeta function was incorrectly linked to the definition of the Riemann zeta function. However, to the eye, the function appeared correct. The link was corrected.

  • Subsection 5.2(iii)

    Three new identities for Pochhammer’s symbol (5.2.6)–(5.2.8) have been added at the end of this subsection.

    Suggested by Tom Koornwinder.

  • Equation (25.2.4)

    The original constraint, s > 0 , was removed because, as stated after (25.2.1), ζ ( s ) is meromorphic with a simple pole at s = 1 , and therefore ζ ( s ) ( s 1 ) 1 is an entire function.

    Suggested by John Harper.

  • Equation (21.3.4)
    21.3.4 θ [ 𝜶 + 𝐦 1 𝜷 + 𝐦 2 ] ( 𝐳 | 𝛀 ) = e 2 π i 𝜶 𝐦 2 θ [ 𝜶 𝜷 ] ( 𝐳 | 𝛀 )

    Originally the vector 𝐦 2 on the right-hand side was given incorrectly as 𝐦 1 .

    Reported 2012-08-27 by Klaas Vantournhout.

  • Equation (26.12.26)
    26.12.26 pp ( n ) ( ζ ( 3 ) ) 7 / 36 2 11 / 36 ( 3 π ) 1 / 2 n 25 / 36 exp ( 3 ( ζ ( 3 ) ) 1 / 3 ( 1 2 n ) 2 / 3 + ζ ( 1 ) )

    Originally this equation was given incorrectly as

    pp ( n ) ( ζ ( 3 ) 2 11 n 25 ) 1 / 36 exp ( 3 ( ζ ( 3 ) n 2 4 ) 1 / 3 + ζ ( 1 ) ) .

    Reported 2011-09-05 by Suresh Govindarajan.