About the Project

Ramanujan 1ψ1 summation

AdvancedHelp

(0.002 seconds)

21—30 of 829 matching pages

21: Wadim Zudilin
He received the Distinguished Award of the Hardy–Ramanujan Society in 2001 and was one of the co-recipients of the 2014 G. …
22: 26.10 Integer Partitions: Other Restrictions
Throughout this subsection it is assumed that | q | < 1 . … where the sum is over nonnegative integer values of k for which n 1 2 ( 3 k 2 ± k ) 0 . … where the sum is over nonnegative integer values of m for which n 1 2 k m 2 m + 1 2 k m 0 . …
§26.10(iv) Identities
Equations (26.10.13) and (26.10.14) are the Rogers–Ramanujan identities. …
23: Bibliography H
  • S. Hanish, R. V. Baier, A. L. Van Buren, and B. J. King (1970) Tables of Radial Spheroidal Wave Functions, Vols. 1-3, Prolate, m = 0 , 1 , 2 ; Vols. 4-6, Oblate, m = 0 , 1 , 2 . Technical report Naval Research Laboratory, Washington, D.C..
  • G. H. Hardy and S. Ramanujan (1918) Asymptotic formulae in combinatory analysis. Proc. London Math. Soc. (2) 17, pp. 75–115.
  • G. H. Hardy (1940) Ramanujan. Twelve Lectures on Subjects Suggested by His Life and Work. Cambridge University Press, Cambridge, England.
  • M. Hauss (1997) An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to ζ ( 2 m + 1 ) . Commun. Appl. Anal. 1 (1), pp. 15–32.
  • R. S. Heller (1976) 25D Table of the First One Hundred Values of j 0 , s , J 1 ( j 0 , s ) , j 1 , s , J 0 ( j 1 , s ) = J 0 ( j 0 , s + 1 ) , j 1 , s , J 1 ( j 1 , s ) . Technical report Department of Physics, Worcester Polytechnic Institute, Worcester, MA.
  • 24: Bibliography W
  • J. Waldvogel (2006) Fast construction of the Fejér and Clenshaw-Curtis quadrature rules. BIT 46 (1), pp. 195–202.
  • G. N. Watson (1935a) Generating functions of class-numbers. Compositio Math. 1, pp. 39–68.
  • G. N. Watson (1949) A table of Ramanujan’s function τ ( n ) . Proc. London Math. Soc. (2) 51, pp. 1–13.
  • E. J. Weniger (1989) Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series. Computer Physics Reports 10 (5-6), pp. 189–371.
  • C. A. Wills, J. M. Blair, and P. L. Ragde (1982) Rational Chebyshev approximations for the Bessel functions J 0 ( x ) , J 1 ( x ) , Y 0 ( x ) , Y 1 ( x ) . Math. Comp. 39 (160), pp. 617–623.
  • 25: 19.35 Other Applications
    Generalizations of elliptic integrals appear in analysis of modular theorems of Ramanujan (Anderson et al. (2000)); analysis of Selberg integrals (Van Diejen and Spiridonov (2001)); use of Legendre’s relation (19.7.1) to compute π to high precision (Borwein and Borwein (1987, p. 26)). …
    26: Bibliography M
  • A. R. Miller (1997) A class of generalized hypergeometric summations. J. Comput. Appl. Math. 87 (1), pp. 79–85.
  • S. C. Milne (1985a) A q -analog of the F 4 5 ( 1 ) summation theorem for hypergeometric series well-poised in 𝑆𝑈 ( n ) . Adv. in Math. 57 (1), pp. 14–33.
  • S. C. Milne (1988) A q -analog of the Gauss summation theorem for hypergeometric series in U ( n ) . Adv. in Math. 72 (1), pp. 59–131.
  • S. C. Milne (2002) Infinite families of exact sums of squares formulas, Jacobi elliptic functions, continued fractions, and Schur functions. Ramanujan J. 6 (1), pp. 7–149.
  • S. C. Milne (1996) New infinite families of exact sums of squares formulas, Jacobi elliptic functions, and Ramanujan’s tau function. Proc. Nat. Acad. Sci. U.S.A. 93 (26), pp. 15004–15008.
  • 27: Bibliography K
  • M. Katsurada (2003) Asymptotic expansions of certain q -series and a formula of Ramanujan for specific values of the Riemann zeta function. Acta Arith. 107 (3), pp. 269–298.
  • Y. S. Kim, A. K. Rathie, and R. B. Paris (2013) An extension of Saalschütz’s summation theorem for the series F r + 2 r + 3 . Integral Transforms Spec. Funct. 24 (11), pp. 916–921.
  • T. H. Koornwinder (1984b) Orthogonal polynomials with weight function ( 1 x ) α ( 1 + x ) β + M δ ( x + 1 ) + N δ ( x 1 ) . Canad. Math. Bull. 27 (2), pp. 205–214.
  • T. H. Koornwinder (2009) The Askey scheme as a four-manifold with corners. Ramanujan J. 20 (3), pp. 409–439.
  • E. D. Krupnikov and K. S. Kölbig (1997) Some special cases of the generalized hypergeometric function F q q + 1 . J. Comput. Appl. Math. 78 (1), pp. 79–95.
  • 28: Bibliography C
  • B. C. Carlson (1979) Computing elliptic integrals by duplication. Numer. Math. 33 (1), pp. 1–16.
  • H. H. Chan (1998) On Ramanujan’s cubic transformation formula for F 1 2 ( 1 3 , 2 3 ; 1 ; z ) . Math. Proc. Cambridge Philos. Soc. 124 (2), pp. 193–204.
  • R. Chelluri, L. B. Richmond, and N. M. Temme (2000) Asymptotic estimates for generalized Stirling numbers. Analysis (Munich) 20 (1), pp. 1–13.
  • D. V. Chudnovsky and G. V. Chudnovsky (1988) Approximations and Complex Multiplication According to Ramanujan. In Ramanujan Revisited (Urbana-Champaign, Ill., 1987), G. E. Andrews, R. A. Askey, B. C. Bernd, K. G. Ramanathan, and R. A. Rankin (Eds.), pp. 375–472.
  • C. W. Clenshaw (1955) A note on the summation of Chebyshev series. Math. Tables Aids Comput. 9 (51), pp. 118–120.
  • 29: 19.9 Inequalities
    Throughout this subsection 0 < k < 1 , except in (19.9.4). …for 0 k 1 . … The earliest is due to Kepler and the most accurate to Ramanujan. Ramanujan’s approximation and its leading error term yield the following approximation to L ( a , b ) / ( π ( a + b ) ) : …Barnard et al. (2000) shows that nine of the thirteen approximations, including Ramanujan’s, are from below and four are from above. …
    30: Bibliography L
  • D. H. Lehmer (1943) Ramanujan’s function τ ( n ) . Duke Math. J. 10 (3), pp. 483–492.
  • D. H. Lehmer (1947) The vanishing of Ramanujan’s function τ ( n ) . Duke Math. J. 14 (2), pp. 429–433.
  • D. N. Lehmer (1914) List of Prime Numbers from 1 to 10,006,721. Publ. No. 165, Carnegie Institution of Washington, Washington, D.C..
  • J. Lepowsky and R. L. Wilson (1982) A Lie theoretic interpretation and proof of the Rogers-Ramanujan identities. Adv. in Math. 45 (1), pp. 21–72.
  • J. Lund (1985) Bessel transforms and rational extrapolation. Numer. Math. 47 (1), pp. 1–14.