About the Project

Ramanujan 1ψ1 summation

AdvancedHelp

(0.003 seconds)

11—20 of 829 matching pages

11: Bibliography R
  • S. Ramanujan (1921) Congruence properties of partitions. Math. Z. 9 (1-2), pp. 147–153.
  • S. Ramanujan (1927) Some properties of Bernoulli’s numbers (J. Indian Math. Soc. 3 (1911), 219–234.). In Collected Papers,
  • S. Ramanujan (1962) Collected Papers of Srinivasa Ramanujan. Chelsea Publishing Co., New York.
  • M. Reed and B. Simon (1980) Methods of Modern Mathematical Physics, Vol. 1, Functional Analysis. Elsevier, New York.
  • RISC Combinatorics Group (website) Research Institute for Symbolic Computation, Hagenberg im Mühlkreis, Austria.
  • 12: 17.12 Bailey Pairs
    A sequence of pairs of rational functions of several variables ( α n , β n ) , n = 0 , 1 , 2 , , is called a Bailey pair provided that for each n 0 The Bailey pair that implies the Rogers–Ramanujan identities §17.2(vi) is:
    α n = ( a ; q ) n ( 1 a q 2 n ) ( 1 ) n q n ( 3 n 1 ) / 2 a n ( q ; q ) n ( 1 a ) ,
    β n = 1 ( q ; q ) n .
    13: 5.13 Integrals
    5.13.1 1 2 π i c i c + i Γ ( s + a ) Γ ( b s ) z s d s = Γ ( a + b ) z a ( 1 + z ) a + b , ( a + b ) > 0 , a < c < b , | ph z | < π .
    5.13.2 1 2 π | Γ ( a + i t ) | 2 e ( 2 b π ) t d t = Γ ( 2 a ) ( 2 sin b ) 2 a , a > 0 , 0 < b < π .
    Ramanujan’s Beta Integral
    5.13.4 d t Γ ( a + t ) Γ ( b + t ) Γ ( c t ) Γ ( d t ) = Γ ( a + b + c + d 3 ) Γ ( a + c 1 ) Γ ( a + d 1 ) Γ ( b + c 1 ) Γ ( b + d 1 ) , ( a + b + c + d ) > 3 .
    5.13.5 1 4 π k = 1 4 Γ ( a k + i t ) Γ ( a k i t ) Γ ( 2 i t ) Γ ( 2 i t ) d t = 1 j < k 4 Γ ( a j + a k ) Γ ( a 1 + a 2 + a 3 + a 4 ) , ( a k ) > 0 , k = 1 , 2 , 3 , 4 .
    14: 17.13 Integrals
    17.13.1 c d ( q x / c ; q ) ( q x / d ; q ) ( a x / c ; q ) ( b x / d ; q ) d q x = ( 1 q ) ( q ; q ) ( a b ; q ) c d ( c / d ; q ) ( d / c ; q ) ( a ; q ) ( b ; q ) ( c + d ) ( b c / d ; q ) ( a d / c ; q ) ,
    or, when 0 < q < 1 , …
    Ramanujan’s Integrals
    17.13.3 0 t α 1 ( t q α + β ; q ) ( t ; q ) d t = Γ ( α ) Γ ( 1 α ) Γ q ( β ) Γ q ( 1 α ) Γ q ( α + β ) ,
    17.13.4 0 t α 1 ( c t q α + β ; q ) ( c t ; q ) d q t = Γ q ( α ) Γ q ( β ) ( c q α ; q ) ( q 1 α / c ; q ) Γ q ( α + β ) ( c ; q ) ( q / c ; q ) .
    15: Bibliography B
  • R. J. Baxter (1981) Rogers-Ramanujan identities in the hard hexagon model. J. Statist. Phys. 26 (3), pp. 427–452.
  • A. Berkovich and B. M. McCoy (1998) Rogers-Ramanujan Identities: A Century of Progress from Mathematics to Physics. In Proceedings of the International Congress of Mathematicians, Vol. III (Berlin, 1998), pp. 163–172.
  • B. C. Berndt, S. Bhargava, and F. G. Garvan (1995) Ramanujan’s theories of elliptic functions to alternative bases. Trans. Amer. Math. Soc. 347 (11), pp. 4163–4244.
  • B. C. Berndt (1989) Ramanujan’s Notebooks. Part II. Springer-Verlag, New York.
  • B. C. Berndt (1991) Ramanujan’s Notebooks. Part III. Springer-Verlag, Berlin-New York.
  • 16: Richard A. Askey
     Schempp), published by Reidel Publishing Company in 1984, Ramanujan Revisited (with G. …
  • 17: Bibliography
  • C. Adiga, B. C. Berndt, S. Bhargava, and G. N. Watson (1985) Chapter 16 of Ramanujan’s second notebook: Theta-functions and q -series. Mem. Amer. Math. Soc. 53 (315), pp. v+85.
  • G. Almkvist and B. Berndt (1988) Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π , and the Ladies Diary. Amer. Math. Monthly 95 (7), pp. 585–608.
  • G. E. Andrews, R. A. Askey, B. C. Berndt, and R. A. Rankin (Eds.) (1988) Ramanujan Revisited. Academic Press Inc., Boston, MA.
  • G. E. Andrews (1972) Summations and transformations for basic Appell series. J. London Math. Soc. (2) 4, pp. 618–622.
  • G. E. Andrews (1984) Multiple series Rogers-Ramanujan type identities. Pacific J. Math. 114 (2), pp. 267–283.
  • 18: 17.14 Constant Term Identities
    17.14.1 ( q ; q ) a 1 + a 2 + + a n ( q ; q ) a 1 ( q ; q ) a 2 ( q ; q ) a n =  coeff. of  x 1 0 x 2 0 x n 0  in  1 j < k n ( x j x k ; q ) a j ( q x k x j ; q ) a k .
    Rogers–Ramanujan Constant Term Identities
    17.14.2 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q 2 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 q ; q ) = H ( q ) ( q ; q 2 ) ,
    17.14.3 n = 0 q n ( n + 1 ) ( q 2 ; q 2 ) n ( q ; q 2 ) n + 1 =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 q ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q ) = G ( q ) ( q ; q 2 ) ,
    17.14.4 n = 0 q n 2 ( q 2 ; q 2 ) n ( q ; q 2 ) n =  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 1 ; q 2 ) ( q ; q 2 ) ( z 1 ; q 2 ) = 1 ( q ; q 2 )  coeff. of  z 0  in  ( z q ; q 2 ) ( z 1 q ; q 2 ) ( q 2 ; q 2 ) ( z 2 ; q 4 ) = G ( q 4 ) ( q ; q 2 ) ,
    19: David M. Bressoud
    His books are Analytic and Combinatorial Generalizations of the Rogers-Ramanujan Identities, published in Memoirs of the American Mathematical Society 24, No. …
    20: Peter Paule
    He is on the editorial boards for the Journal of Symbolic Computation and The Ramanujan Journal, and is Managing Editor of Annals of Combinatorics. …