About the Project

Pringsheim%20theorem

AdvancedHelp

(0.001 seconds)

21—30 of 198 matching pages

21: Bibliography F
  • J. Faraut (1982) Un théorème de Paley-Wiener pour la transformation de Fourier sur un espace riemannien symétrique de rang un. J. Funct. Anal. 49 (2), pp. 230–268.
  • FDLIBM (free C library)
  • S. Fempl (1960) Sur certaines sommes des intégral-cosinus. Bull. Soc. Math. Phys. Serbie 12, pp. 13–20 (French).
  • H. E. Fettis and J. C. Caslin (1964) Tables of Elliptic Integrals of the First, Second, and Third Kind. Technical report Technical Report ARL 64-232, Aerospace Research Laboratories, Wright-Patterson Air Force Base, Ohio.
  • G. Freud (1969) On weighted polynomial approximation on the whole real axis. Acta Math. Acad. Sci. Hungar. 20, pp. 223–225.
  • 22: Bibliography M
  • A. J. MacLeod (1996b) Rational approximations, software and test methods for sine and cosine integrals. Numer. Algorithms 12 (3-4), pp. 259–272.
  • S. C. Milne (1985a) A q -analog of the F 4 5 ( 1 ) summation theorem for hypergeometric series well-poised in 𝑆𝑈 ( n ) . Adv. in Math. 57 (1), pp. 14–33.
  • S. C. Milne (1988) A q -analog of the Gauss summation theorem for hypergeometric series in U ( n ) . Adv. in Math. 72 (1), pp. 59–131.
  • S. C. Milne (1997) Balanced Θ 2 3 summation theorems for U ( n ) basic hypergeometric series. Adv. Math. 131 (1), pp. 93–187.
  • D. S. Moak (1981) The q -analogue of the Laguerre polynomials. J. Math. Anal. Appl. 81 (1), pp. 20–47.
  • 23: Bibliography G
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • K. Girstmair (1990a) A theorem on the numerators of the Bernoulli numbers. Amer. Math. Monthly 97 (2), pp. 136–138.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • R. A. Gustafson (1987) Multilateral summation theorems for ordinary and basic hypergeometric series in U ( n ) . SIAM J. Math. Anal. 18 (6), pp. 1576–1596.
  • 24: 36 Integrals with Coalescing Saddles
    25: Gergő Nemes
    As of September 20, 2021, Nemes performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 25 Zeta and Related Functions. …
    26: Wolter Groenevelt
    As of September 20, 2022, Groenevelt performed a complete analysis and acted as main consultant for the update of the source citation and proof metadata for every formula in Chapter 18 Orthogonal Polynomials. …
    27: 25.6 Integer Arguments
    25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
    25.6.4 ζ ( 2 n ) = 0 , n = 1 , 2 , 3 , .
    28: 33.24 Tables
  • Abramowitz and Stegun (1964, Chapter 14) tabulates F 0 ( η , ρ ) , G 0 ( η , ρ ) , F 0 ( η , ρ ) , and G 0 ( η , ρ ) for η = 0.5 ( .5 ) 20 and ρ = 1 ( 1 ) 20 , 5S; C 0 ( η ) for η = 0 ( .05 ) 3 , 6S.

  • 29: 19.36 Methods of Computation
    Numerical differences between the variables of a symmetric integral can be reduced in magnitude by successive factors of 4 by repeated applications of the duplication theorem, as shown by (19.26.18). …
    19.36.2 1 3 14 E 2 + 1 6 E 3 + 9 88 E 2 2 3 22 E 4 9 52 E 2 E 3 + 3 26 E 5 1 16 E 2 3 + 3 40 E 3 2 + 3 20 E 2 E 4 + 45 272 E 2 2 E 3 9 68 ( E 3 E 4 + E 2 E 5 ) .
    For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). … When the values of complete integrals are known, addition theorems with ψ = π / 2 19.11(ii)) ease the computation of functions such as F ( ϕ , k ) when 1 2 π ϕ is small and positive. …These special theorems are also useful for checking computer codes. …
    30: 13.13 Addition and Multiplication Theorems
    §13.13 Addition and Multiplication Theorems
    §13.13(i) Addition Theorems for M ( a , b , z )
    §13.13(ii) Addition Theorems for U ( a , b , z )
    13.13.12 e y ( x + y x ) 1 b n = 0 ( y ) n n ! x n U ( a n , b n , x ) , | y | < | x | .
    §13.13(iii) Multiplication Theorems for M ( a , b , z ) and U ( a , b , z )